Competition between Carrier Injection and Structural Distortions in Electron‐Doped Perovskite Nickelate Thin Films

The discovery of superconductivity in doped infinite‐layer nickelate thin films has brought increased attention to the behavior of the doped perovskite phase. Despite this interest, the majority of existing studies pertain to hole‐doped perovskite rare‐earth nickelate thin films, while most electron‐doping studies have been performed on bulk materials so far. To tackle this imbalance, a detailed study that addresses doping of NdNiO3 thin films using A‐site substitution is presented, using Pb as a dopant and taking advantage of its valence‐skipping nature. Through a combination of complementary techniques including X‐ray diffraction, transport measurements, X‐ray absorption spectroscopy, electron energy‐loss spectroscopy and scanning transmission electron microscopy, the valence of Pb in the Nd1−xPbxNiO3 structure is confirmed to be 4+, and the behavior of the doped thin films is found to be controlled by a competition between carrier injection and structural distortions, which respectively reduce and increase the metal‐to‐insulator transition temperature. This work provides a systematic study of electron doping in NdNiO3, demonstrating that A‐site substitution with Pb is an appropriate method for such doping in perovskite rare‐earth nickelate systems.

[1]  Ismail El Baggari,et al.  Antiferromagnetic metal phase in an electron-doped rare-earth nickelate , 2022, Nature Physics.

[2]  L. Kourkoutis,et al.  Superconductivity in a quintuple-layer square-planar nickelate , 2021, Nature Materials.

[3]  M. Guennou,et al.  Crossover between distinct symmetries in solid solutions of rare earth nickelates , 2021, APL Materials.

[4]  M. Isobe,et al.  Topotactic transformation of single crystals: From perovskite to infinite-layer nickelates , 2021, Science advances.

[5]  L. Kourkoutis,et al.  Nickelate Superconductivity without Rare‐Earth Magnetism: (La,Sr)NiO2 , 2021, Advanced materials.

[6]  D. Alexander,et al.  Near-Atomic-Scale Mapping of Electronic Phases in Rare Earth Nickelate Superlattices , 2021, Nano letters.

[7]  B. Noheda,et al.  From hidden metal-insulator transition to Planckian-like dissipation by tuning the oxygen content in a nickelate , 2020, npj Quantum Materials.

[8]  L. Kourkoutis,et al.  A superconducting praseodymium nickelate with infinite layer structure. , 2020, Nano letters.

[9]  A. Georges,et al.  Length scales of interfacial coupling between metal and insulator phases in oxides , 2020, Nature Materials.

[10]  B. Noheda,et al.  Tunable resistivity exponents in the metallic phase of epitaxial nickelates , 2019, Nature Communications.

[11]  D. Landau,et al.  Carrier localization in perovskite nickelates from oxygen vacancies , 2019, Proceedings of the National Academy of Sciences.

[12]  Harold Y. Hwang,et al.  Superconductivity in an infinite-layer nickelate , 2019, Nature.

[13]  M. Bibes,et al.  Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching , 2018, Proceedings of the National Academy of Sciences.

[14]  Bilge Yildiz,et al.  Strongly correlated perovskite lithium ion shuttles , 2018, Proceedings of the National Academy of Sciences.

[15]  Z. Zhong,et al.  Complex magnetic order in nickelate slabs , 2018, Nature Physics.

[16]  J. Íñiguez,et al.  Rare-earth nickelates RNiO3: thin films and heterostructures , 2018, Reports on progress in physics. Physical Society.

[17]  Hua Zhou,et al.  Perovskite nickelates as electric-field sensors in salt water , 2017, Nature.

[18]  H. M. Jang,et al.  Influence of tensile-strain-induced oxygen deficiency on metal-insulator transitions in NdNiO3−δ epitaxial thin films , 2017, Scientific Reports.

[19]  Hua Zhou,et al.  Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO3/NdGaO3 heterostructures , 2017 .

[20]  M. Guennou,et al.  Conductivity and Local Structure of LaNiO3 Thin Films , 2017, Advanced materials.

[21]  H. Kumigashira,et al.  Reversible Changes in Resistance of Perovskite Nickelate NdNiO3 Thin Films Induced by Fluorine Substitution. , 2017, ACS applied materials & interfaces.

[22]  Thomas Tybell,et al.  Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting , 2017, Advanced Structural and Chemical Imaging.

[23]  L. You,et al.  Localization-driven metal–insulator transition in epitaxial hole-doped Nd1−xSrxNiO3 ultrathin films , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  J. Triscone,et al.  Ferroelectric domains in epitaxial PbxSr1−xTiO3 thin films investigated using X-ray diffraction and piezoresponse force microscopy , 2016 .

[25]  G. Sawatzky,et al.  Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates , 2016, Nature Communications.

[26]  Hua Zhou,et al.  Strongly correlated perovskite fuel cells , 2016, Nature.

[27]  O. Stéphan,et al.  Interlayer coupling through a dimensionality-induced magnetic state , 2016, Nature Communications.

[28]  L. You,et al.  Oxygen Vacancy Induced Room-Temperature Metal-Insulator Transition in Nickelate Films and Its Potential Application in Photovoltaics. , 2016, ACS applied materials & interfaces.

[29]  Dan Zhou,et al.  Sample Tilt Effects on Atom Column Position Determination in ABF-STEM Imaging , 2016, Microscopy and Microanalysis.

[30]  O. Stéphan,et al.  Interfacial Control of Magnetic Properties at LaMnO3/LaNiO3 Interfaces. , 2015, Nano letters.

[31]  Lewys Jones,et al.  Smart Align—a new tool for robust non-rigid registration of scanning microscope data , 2015, Advanced Structural and Chemical Imaging.

[32]  J. Goodenough,et al.  Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru) , 2015, Science and technology of advanced materials.

[33]  W. Schlotter,et al.  Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. , 2015, Nature materials.

[34]  John W. Freeland,et al.  Evolution of electronic structure across the rare-earth RNiO3 series , 2015, 1504.02802.

[35]  S. Stemmer,et al.  Correlation between stoichiometry, strain, and metal-insulator transitions of NdNiO3 films , 2015 .

[36]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[37]  A. Georges,et al.  Electronic transitions in strained SmNiO3 thin films , 2014 .

[38]  Jian Shi,et al.  Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping , 2014, Nature Communications.

[39]  Philippe Ghosez,et al.  First-principles study of the lattice dynamical properties of strontium ruthenate , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  P. Xiang,et al.  Strain controlled metal-insulator transition in epitaxial NdNiO3 thin films , 2013 .

[41]  Lingfei Wang,et al.  Anisotropic-strain-controlled metal-insulator transition in epitaxial NdNiO3 films grown on orthorhombic NdGaO3 substrates , 2013 .

[42]  J. Íñiguez,et al.  Exchange bias in LaNiO3-LaMnO3 superlattices. , 2012, Nature materials.

[43]  S. Stemmer,et al.  Probing the metal-insulator transition of NdNiO3 by electrostatic doping , 2011, 1110.4134.

[44]  T. Ohba,et al.  Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures. , 2011, Journal of the American Chemical Society.

[45]  Eberhard Goering,et al.  Orbital reflectometry of oxide heterostructures. , 2010, Nature materials.

[46]  Shimpei Ono,et al.  Electric‐Field Control of the Metal‐Insulator Transition in Ultrathin NdNiO3 Films , 2010, Advanced materials.

[47]  A. Sawa,et al.  Room temperature Mott metal-insulator transition and its systematic control in Sm1−xCaxNiO3 thin films , 2010 .

[48]  Leon Balents,et al.  Low-dimensional Mott material: transport in ultrathin epitaxial LaNiO3 films , 2010 .

[49]  J. Triscone,et al.  Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3 , 2009 .

[50]  Gustau Catalan,et al.  Progress in perovskite nickelate research , 2008 .

[51]  A. Kaul,et al.  Oxygen nonstoichiometry of NdNiO3−δ and SmNiO3−δ , 2004 .

[52]  M. Medarde,et al.  Structural, magnetic and electronic properties of perovskites (R = rare earth) , 1997 .

[53]  M. Hidalgo,et al.  Hole and Electron Doping of RNiO3 (R = La, Nd) , 1995 .

[54]  M. J. Martínez-Lope,et al.  Effects of the electron and hole doping in the RNiO3 compounds , 1994 .

[55]  A. S. Cooper,et al.  Electron-hole doping of the metal-insulator transition compound RENiO3 , 1994 .

[56]  J. Rodríguez-Carvajal,et al.  Sudden Appearance of an Unusual Spin Density Wave At the Metal-Insulator Transition in the Perovskites RNiO3 (R = Pr, Nd) , 1992 .

[57]  Leo Brewer,et al.  High‐Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg , 1987 .