The Gaia-ESO Survey: Galactic evolution of lithium at high metallicity

Reconstructing the Galactic evolution of lithium (Li) is the main tool used to constrain the source(s) of Li enrichment in the Galaxy. Recent results have suggested a decline in Li at supersolar metallicities, which may indicate reduced production. We exploit the unique characteristics of the Gaia-ESO Survey open star cluster sample to further investigate this issue and to better constrain the evolution of Li at high metallicity. We trace the the upper envelope of Li abundance versus metallicity evolution using 18 clusters and considering members that should not have suffered any Li depletion. At variance with previous claims, we do not find any evidence of a Li decrease at high metallicity. The most metal-rich clusters in the sample ([Fe/H] about 0.3) actually show the highest Li abundances, with A(Li) > 3.4. Our results clearly show that previous findings, which were based on field stars, were affected by selection effects. The metal-rich population in the solar neighbourhood is composed of relatively old and cool stars that have already undergone some Li depletion; hence, their measured Li does not represent the initial interstellar medium abundance, but a lower limit to it.

[1]  Barcelona,et al.  The Gaia-ESO Survey: membership probabilities for stars in 32 open clusters from 3D kinematics , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  M. Hayden,et al.  The GALAH survey: a new constraint on cosmological lithium and Galactic lithium evolution from warm dwarf stars , 2020, Monthly Notices of the Royal Astronomical Society: Letters.

[3]  H. Kjeldsen,et al.  High-resolution Spectroscopic Study of Dwarf Stars in the Northern Sky: Lithium, Carbon, and Oxygen Abundances , 2020, The Astronomical Journal.

[4]  S. Lucatello,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - III. Detection of lithium in the metal-poor bulge dwarf MOA-2010-BLG-285S , 2010, 1009.5792.

[5]  Sergey E. Koposov,et al.  The Gaia-ESO survey: Calibrating a relationship between age and the [C/N] abundance ratio with open clusters , 2019, Astronomy & Astrophysics.

[6]  F. Matteucci,et al.  Evolution of lithium in the Milky Way halo, discs, and bulge , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  F. Anders,et al.  Explaining the decrease in ISM lithium at super-solar metallicities in the solar vicinity , 2019, Astronomy & Astrophysics.

[8]  P. Molaro,et al.  7Li evolution in the thin and thick discs of the Milky Way , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  J. Hern'andez,et al.  3D non-LTE corrections for Li abundance and 6 Li/ 7 Li isotopic ratio in solar-type stars. I. Application to HD 207129 and HD 95456 , 2018, 1807.04089.

[10]  Donald B. Lee-Brown,et al.  Li in Open Clusters: Cool Dwarfs in the Young, Subsolar-metallicity Cluster M35 (NGC 2168) , 2018, The Astronomical Journal.

[11]  T. Bensby,et al.  Exploring the production and depletion of lithium in the Milky Way stellar disk , 2018, Astronomy & Astrophysics.

[12]  J. Prieto,et al.  Beryllium detection in the very fast nova ASASSN-16kt (V407 Lupi) , 2018, 1802.05896.

[13]  J. Uzan,et al.  Precision big bang nucleosynthesis with improved Helium-4 predictions , 2018, Physics Reports.

[14]  S. Randich,et al.  The Gaia-ESO Survey: open clusters in Gaia-DR1 , 2017, Astronomy & Astrophysics.

[15]  Sergey E. Koposov,et al.  The Gaia-ESO survey: Matching chemodynamical simulations to observations of the Milky Way , 2017, 1709.01523.

[16]  A. Bragaglia,et al.  The Gaia -ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc , 2017, 1711.04829.

[17]  A. Recio-Blanco,et al.  The AMBRE project: a study of Li evolution in the Galactic thin and thick discs , 2017, 1709.03998.

[18]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[19]  C. Deliyannis,et al.  WIYN Open Cluster Study. LXXV. Testing the Metallicity Dependence of Stellar Lithium Depletion Using Hyades-aged Clusters. I. Hyades and Praesepe , 2017, 1702.03936.

[20]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[21]  M. Valle,et al.  Highly enriched 7Be in the ejecta of Nova Sagittarii 2015 No. 2 (V5668 Sgr) and the Galactic 7Li origin , 2016, 1609.07297.

[22]  G. Guiglion,et al.  The AMBRE Project: Constraining the lithium evolution in the Milky Way , 2016, 1608.03411.

[23]  A. Klutsch,et al.  The Gaia-ESO Survey: A lithium-rotation connection at 5 Myr? , 2016, 1604.07580.

[24]  B. Fields,et al.  Big bang nucleosynthesis: Present status , 2016 .

[25]  E. Caffau,et al.  Lithium spectral line formation in stellar atmospheres. The impact of convection and NLTE effects , 2015, 1512.08999.

[26]  L. Pasquini,et al.  EARLY OPTICAL SPECTRA OF NOVA V1369 CEN SHOW THE PRESENCE OF LITHIUM , 2015, 1506.08048.

[27]  Akira Arai,et al.  Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013) , 2015, Nature.

[28]  M. Tsantaki,et al.  Li abundances in F stars: planets, rotation, and Galactic evolution , 2014, 1412.4618.

[29]  P. François,et al.  Lithium abundance in the metal-poor open cluster NGC 2243 , 2013, 1303.3027.

[30]  B. Anthony-Twarog,et al.  LITHIUM ABUNDANCES OF THE SUPER-METAL-RICH OPEN CLUSTER NGC 6253 , 2012, 1209.5758.

[31]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[32]  M. Asplund,et al.  Departures from LTE for neutral Li in late-type stars , 2009, 0906.0899.

[33]  J. H. Roman,et al.  The Web as an API. , 2001 .

[34]  F. Ferrini,et al.  Galactic Chemical Evolution of Lithium: Interplay between Stellar Sources , 2001, astro-ph/0105558.

[35]  P. Ventura,et al.  The stellar origin of 7Li. Do AGB stars contribute a substantial fraction of the local Galactic lith , 2001, astro-ph/0105483.

[36]  M. Pinsonneault MIXING IN STARS , 1997 .

[37]  V. Trimble,et al.  ASTROPHYSICS IN 1993 , 1994 .

[38]  John R. Stauffer,et al.  The Evolution of the Lithium Abundances of Solar-Type Stars. IV. Praesepe , 1993 .

[39]  David R. Soderblom,et al.  The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group , 1993 .

[40]  A. Boesgaard,et al.  Lithium in the Hyades Cluster , 1986 .