Microcircuitry of the on-beta ganglion cell in daylight, twilight, and starlight.

[1]  P Sterling,et al.  Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  L. Frishman,et al.  Scotopic threshold response of proximal retina in cat. , 1986, Journal of neurophysiology.

[3]  P. Sterling,et al.  Microcircuitry of beta ganglion cells in cat retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[5]  Y. Fukuda,et al.  Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina. , 1984, Journal of neurophysiology.

[6]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  H. Wässle,et al.  Pharmacological modulation of on and off ganglion cells in the cat retina , 1984, Neuroscience.

[8]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[9]  Helga Kolb,et al.  Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina , 1983, Vision Research.

[10]  H. Saito,et al.  Morphology of physiologically identified X‐, Y‐, and W‐type retinal ganglion cells of the cat , 1983, The Journal of comparative neurology.

[11]  D. Mastronarde Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. , 1983, Journal of neurophysiology.

[12]  C. Enroth-Cugell,et al.  Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements , 1982, Vision Research.

[13]  P. Lennie,et al.  The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat , 1982, The Journal of physiology.

[14]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[15]  J. McReynolds,et al.  Sustained synaptic input to ganglion cells of mudpuppy retina , 1982, The Journal of physiology.

[16]  S. Watanabe,et al.  GABA-mediated negative feedback from horizontal cells to cones in carp retina. , 1982, The Japanese journal of physiology.

[17]  Helga Kolb,et al.  Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study , 1981, Vision Research.

[18]  H. Wässle,et al.  Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. , 1979, The Journal of physiology.

[19]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[20]  P Lennie,et al.  Convergence of rod and cone signals in the cat's retina , 1977, The Journal of physiology.

[21]  Christina Enroth-Cugell,et al.  Cone signals in the cat's retina , 1977, The Journal of physiology.

[22]  H. Kolb,et al.  The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations , 1977, Journal of neurocytology.

[23]  R. Nelson,et al.  Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat , 1977, The Journal of comparative neurology.

[24]  P Lennie,et al.  The control of retinal ganglion cell discharge by receptive field surrounds. , 1975, The Journal of physiology.

[25]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[26]  A. B. Bonds,et al.  The bleaching and regeneration of rhodopsin in the cat , 1974, The Journal of physiology.

[27]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[28]  Helga Kolb,et al.  The connections between horizontal cells and photoreceptors in the retina of the cat: Electron microscopy of Golgi preparations , 1974, The Journal of comparative neurology.

[29]  R. H. Steinberg,et al.  The distribution of rods and cones in the retina of the cat (Felis domesticus) , 1973, The Journal of comparative neurology.

[30]  R. H. Steinberg,et al.  Incremental responses to light recorded from pigment epithelial cells and horizontal cells of the cat retina , 1971, The Journal of physiology.

[31]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[32]  H. Barlow,et al.  Responses to single quanta of light in retinal ganglion cells of the cat. , 1971, Vision research.

[33]  H. Barlow,et al.  Changes in the maintained discharge with adaptation level in the cat retina , 1969, The Journal of physiology.

[34]  P. O. Bishop,et al.  VISUAL OPTICS IN THE CAT, INCLUDING POSTERIOR NODAL DISTANCE AND RETINAL LANDMARKS. , 1963, Vision research.

[35]  H. Barlow,et al.  Change of organization in the receptive fields of the cat's retina during dark adaptation , 1957, The Journal of physiology.