How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record

[1]  W. Bleeker,et al.  U-Pb Geochronology and Geochemistry of the Povungnituk Group of the Cape Smith Belt: Part of a Craton-Scale Circa 2.0 Ga Minto-Povungnituk Large Igneous Province, Northern Superior Craton , 2018, Lithos.

[2]  S. Grasby,et al.  On the causes of mass extinctions , 2017 .

[3]  N. Youbi,et al.  A c. 1710 Ma mafic sill emplaced into a quartzite and calcareous series from Ighrem, Anti-Atlas - Morocco: Evidence that the Taghdout passive margin sedimentary group is nearly 1 Ga older than previously thought , 2017 .

[4]  W. Bleeker,et al.  Timing and tempo of the Great Oxidation Event , 2017, Proceedings of the National Academy of Sciences.

[5]  R. Posenato,et al.  Methane Hydrate: Killer cause of Earth's greatest mass extinction , 2016 .

[6]  T. Torsvik,et al.  Climates Past and Present , 2016 .

[7]  S. Jowitt,et al.  Large Igneous Provinces, Their Giant Mafic Dyke Swarms, and Links to Metallogeny , 2016 .

[8]  R. Srivastava,et al.  Neoarchaean‐Palaeoproterozoic Mafic Dyke Swarms from the Singhbhum Granite Complex, Singhbhum Craton, Eastern India: Implications for Identification of Large Igneous Provinces and Their Possible Continuation on Other Formerly Adjacent Crustal Blocks , 2016 .

[9]  T. Algeo,et al.  Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: A review , 2016 .

[10]  S. Wilde,et al.  Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination , 2016 .

[11]  M. Leng,et al.  Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change , 2016 .

[12]  B. Cousens,et al.  Mafic magmatism in the Belt-Purcell Basin and Wyoming Province of western Laurentia , 2016 .

[13]  B. Beauchamp,et al.  Early Triassic productivity crises delayed recovery from world's worst mass extinction , 2016 .

[14]  S. Petersen,et al.  Rifting under steam—How rift magmatism triggers methane venting from sedimentary basins , 2016 .

[15]  D. Cantrill,et al.  Severe selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events , 2016 .

[16]  A. Jacobson,et al.  Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway , 2016 .

[17]  M. Kunzmann,et al.  Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth , 2016 .

[18]  S. Petersen,et al.  End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change , 2016, Nature Communications.

[19]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[20]  K. Grice,et al.  Biomarker Records Associated with Mass Extinction Events , 2016 .

[21]  B. Schmitz,et al.  A new type of solar-system material recovered from Ordovician marine limestone , 2016, Nature Communications.

[22]  A. S. Mekhonoshin,et al.  Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic , 2016 .

[23]  D. Mark,et al.  Geology and geochronology of the Tana Basin, Ethiopia: LIP volcanism, super eruptions and Eocene-Oligocene environmental change , 2016 .

[24]  M. Hamilton,et al.  The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks , 2016 .

[25]  R. Summons,et al.  Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago , 2016, Science Advances.

[26]  D. Stockli,et al.  Continental arc volcanism as the principal driver of icehouse-greenhouse variability , 2016, Science.

[27]  I. Rodushkin,et al.  Cu isotopes in marine black shales record the Great Oxidation Event , 2016, Proceedings of the National Academy of Sciences.

[28]  M. Rehkämper,et al.  Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2 , 2016 .

[29]  D. Bottjer,et al.  Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction , 2016, Nature Communications.

[30]  A. Kerr,et al.  Did mantle plume magmatism help trigger the Great Oxidation Event , 2016 .

[31]  Douglas Fox What sparked the Cambrian explosion? , 2016, Nature.

[32]  L. D. Lacerda,et al.  Mercury anomaly, Deccan volcanism and the end-Cretaceous Mass Extinction: REPLY , 2016 .

[33]  A. V. Stepanova,et al.  New U–Pb baddeleyite age, and AMS and paleomagnetic data for dolerites in the Lake Onega region belonging to the 1.98–1.95 Ga regional Pechenga–Onega Large Igneous Province , 2016 .

[34]  K. Billström,et al.  New U–Pb ages for mafic dykes in the Northwestern region of the Ukrainian shield: coeval tholeiitic and jotunitic magmatism , 2016 .

[35]  M. Hamilton,et al.  Baddeleyite U–Pb ages and gechemistry of the 1875–1835 Ma Black Hills Dyke Swarm across north-eastern South Africa: part of a trans-Kalahari Craton back-arc setting? , 2016 .

[36]  K. Billström,et al.  The U–Pb zircon and baddeleyite ages of the Neoproterozoic Volyn Large Igneous Province: implication for the age of the magmatism and the nature of a crustal contaminant , 2016 .

[37]  S. Bowring,et al.  An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy , 2015 .

[38]  S. Planke,et al.  Thermogenic methane release as a cause for the long duration of the PETM , 2016, Proceedings of the National Academy of Sciences.

[39]  Jaime Urrutia-Fucugauchi,et al.  Chicxulub Asteroid Impact , 2015 .

[40]  R. Large,et al.  Cycles of nutrient trace elements in the Phanerozoic Ocean and relationship to atmosphere-ocean oxygenation , 2015 .

[41]  M. Richards,et al.  Triggering of the largest Deccan eruptions by the Chicxulub impact , 2015 .

[42]  T. Mather,et al.  Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province , 2015 .

[43]  M. Richards,et al.  State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact , 2015, Science.

[44]  L. Duponchel,et al.  Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction , 2015, Nature Communications.

[45]  M. Radisic,et al.  Platform technology for scalable assembly of instantaneously functional mosaic tissues , 2015, Science Advances.

[46]  A. Knoll,et al.  Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation , 2015, Nature.

[47]  H. Sanei,et al.  Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea , 2015, Geological Magazine.

[48]  A. Saunders Two LIPs and two Earth-system crises: the impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle , 2015, Geological Magazine.

[49]  F. Horton Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? , 2015 .

[50]  T. Peterson,et al.  The Kivalliq Igneous Suite: Anorogenic bimodal magmatism at 1.75Ga in the western Churchill Province, Canada , 2015 .

[51]  M. Erlström,et al.  Intense and widespread seismicity during the end-Triassic mass extinction due to emplacement of a large igneous province , 2015 .

[52]  T. Lenton,et al.  Ocean acidification and the Permo-Triassic mass extinction , 2015, Science.

[53]  J. Spangenberg,et al.  A multi-proxy approach to decode the end-Cretaceous mass extinction , 2015 .

[54]  H. Sanei,et al.  Evidence of volcanic induced environmental stress during the end-Triassic event , 2015 .

[55]  A. V. Stepanova,et al.  The 2.31 Ga mafic dykes in the Karelian Craton, eastern Fennoscandian shield: U–Pb age, source characteristics and implications for continental break-up processes , 2015 .

[56]  G. Keller,et al.  Timing, tempo and paleoenvironmental influence of Deccan volcanism relative to the KT extinction , 2015 .

[57]  L. Simon,et al.  Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic) , 2015 .

[58]  S. Bowring,et al.  U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction , 2015, Science.

[59]  Seung Ryeol Lee,et al.  Late Ordovician volcanism in Korea constrains the timing for breakup of Sino-Korean Craton from Gondwana , 2014 .

[60]  T. Lenton,et al.  Changing tectonic controls on the long‐term carbon cycle from Mesozoic to present , 2014 .

[61]  Â. Min,et al.  Microanalyses link sulfur from large igneous provinces and Mesozoic mass extinctions , 2014 .

[62]  P. Wignall,et al.  Large igneous provinces and mass extinctions: An update , 2014 .

[63]  S. Self,et al.  Emplacement characteristics, time scales, and volcanic gas release rates of continental flood basalt eruptions on Earth , 2014 .

[64]  G. Keller,et al.  Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: A global survey , 2014 .

[65]  R. Ernst Continental flood basalts and volcanic rifted margins , 2014 .

[66]  V. Courtillot,et al.  A review of the embedded time scales of flood basalt volcanism with special emphasis on dramatically short magmatic pulses , 2014 .

[67]  J. Mirão,et al.  Atmospheric halogen and acid rains during the main phase of Deccan eruptions: Magnetic and mineral evidence , 2014 .

[68]  A. Hofmann,et al.  Dykes of the 1.11 Ga Umkondo LIP, Southern Africa: Clues to a complex plumbing system , 2014 .

[69]  L. Krystyn,et al.  Towards accurate numerical calibration of the Late Triassic: High- precision U-Pb geochronology constraints on the duration of the Rhaetian , 2014 .

[70]  D. Weis,et al.  Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes , 2014 .

[71]  L. Pesonen,et al.  Paleomagnetic and geochronological studies on Paleoproterozoic diabase dykes of Karelia, East Finland—Key for testing the Superia supercraton , 2014 .

[72]  D. Harper,et al.  End Ordovician extinctions: A coincidence of causes , 2014 .

[73]  J. Bédard,et al.  Numerical constraints on degassing of metamorphic CO2 during the Neoproterozoic Franklin large igneous event, Arctic Canada , 2014 .

[74]  A. Sluijs,et al.  Plate tectonic controls on atmospheric CO2 levels since the Triassic , 2014, Proceedings of the National Academy of Sciences.

[75]  I. Jarvis,et al.  Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2 , 2014 .

[76]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[77]  S. Bowring,et al.  High-precision timeline for Earth’s most severe extinction , 2014, Proceedings of the National Academy of Sciences.

[78]  B. Haq Cretaceous eustasy revisited , 2014 .

[79]  J. Eldrett,et al.  Decoupling of the carbon cycle during Ocean Anoxic Event 2 , 2013 .

[80]  J. Mahoney,et al.  An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean , 2013 .

[81]  G. M. Young Evolution of Earth's climatic system: Evidence from ice ages, isotopes, and impacts , 2013 .

[82]  D. Harper,et al.  Causes of the Cambrian Explosion , 2013, Science.

[83]  W. Bleeker,et al.  Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution , 2013 .

[84]  A. Kerr,et al.  The northern and southern sections of the western ca. 1880 Ma Circum-Superior Large Igneous Province, North America: The Pickle Crow dyke connection? , 2013 .

[85]  S. Jowitt,et al.  Early Paleozoic mafic magmatic events on the eastern margin of the Siberian Craton , 2013 .

[86]  L. Ferrari,et al.  Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years , 2013 .

[87]  D. Kent,et al.  Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province , 2013, Science.

[88]  A. Robock Climatic Impact of Volcanic Emissions , 2013 .

[89]  J. Spangenberg,et al.  Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus , 2013, Geological Magazine.

[90]  K. Wegmann,et al.  Miocene rejuvenation of topographic relief in the southern Appalachians , 2013 .

[91]  G. Racki The Alvarez Impact Theory of Mass Extinction; Limits to its Applicability and the “Great Expectations Syndrome” , 2012 .

[92]  A. Munnecke,et al.  Systematic occurrences of malformed (teratological) acritarchs in the run-up of Early Palaeozoic δ13C isotope excursions , 2012 .

[93]  A. Schmidt,et al.  Volcanism and Global Environmental Change: Volatile release from flood basalt eruptions: understanding the potential environmental effects , 2012 .

[94]  L. Ainsaar,et al.  Biotic response to explosive volcanism: Ostracod recovery after Ordovician ash-falls , 2012 .

[95]  A. M. Thorne,et al.  Deposition of 1.88-billion-year-old Iron Formations as a Consequence of Rapid Crustal Growth , 2012, Journal of the Geological Society of India.

[96]  G. Foulger Are 'hot spots' hot spots? , 2012 .

[97]  P. Wessel,et al.  Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander , 2012 .

[98]  V. Kravchinsky Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events , 2012 .

[99]  R. Müller,et al.  An open-source software environment for visualizing and refining plate tectonic reconstructions using high-resolution geological and geophysical data sets , 2012 .

[100]  J. Wright,et al.  Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2 , 2012 .

[101]  P. Froelich,et al.  Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering , 2012, Science.

[102]  T. Worsley,et al.  A human-induced hothouse climate? , 2012 .

[103]  T. Lenton,et al.  First plants cooled the Ordovician , 2012 .

[104]  Stephen Barker,et al.  The Geological Record of Ocean Acidification , 2011, Science.

[105]  S. Peters,et al.  Phanerozoic Earth System Evolution and Marine Biodiversity , 2011, Science.

[106]  D. Bradley Secular trends in the geologic record and the supercontinent cycle , 2011 .

[107]  G. Dickens Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events , 2011 .

[108]  S. Planke,et al.  Multistage Evolution of Dolerites in the Karoo Large Igneous Province, Central South Africa , 2011 .

[109]  H. Sanei,et al.  Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction , 2011 .

[110]  W. Kiessling,et al.  On the potential for ocean acidification to be a general cause of ancient reef crises , 2011 .

[111]  M. Hamilton,et al.  U-Pb geochronology of the Western Channel Diabase, northwestern Laurentia: Implications for a large 1.59Ga magmatic province, Laurentia's APWP and paleocontinental reconstructions of Laurentia, Baltica and Gawler craton of southern Australia , 2010 .

[112]  R. Twitchett,et al.  Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences , 2010 .

[113]  S. Self,et al.  The largest volcanic eruptions on Earth , 2010 .

[114]  P. Renne,et al.  Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology , 2010 .

[115]  T. Worsley,et al.  Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions , 2010 .

[116]  M. Trieloff,et al.  A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record , 2010 .

[117]  U. Schaltegger,et al.  Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level , 2010 .

[118]  Noah J. Planavsky,et al.  Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes , 2010 .

[119]  W. Huff,et al.  Ordovician explosive volcanism , 2010 .

[120]  M. Joachimski,et al.  Did intense volcanism trigger the first Late Ordovician icehouse , 2010 .

[121]  A. Anbar,et al.  Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes , 2010 .

[122]  David S. Jones,et al.  Calibrating the Cryogenian , 2010, Science.

[123]  Elisabetta Pierazzo,et al.  The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary , 2010, Science.

[124]  T. Petäjä,et al.  The Role of Sulfuric Acid in Atmospheric Nucleation , 2010, Science.

[125]  H. Jenkyns Geochemistry of oceanic anoxic events , 2010 .

[126]  K. Bell,et al.  Large igneous provinces (LIPs) and carbonatites , 2010 .

[127]  D. Canfield,et al.  Chromium Isotopes Record Fluctuations in Precambrian Biospheric Oxygenation , 2009 .

[128]  D. Canfield,et al.  Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes , 2009, Nature.

[129]  J. Mahoney,et al.  Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event , 2009 .

[130]  P. Renne,et al.  An appraisal of the ages of terrestrial impact structures , 2009 .

[131]  N. Dunbar,et al.  Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse-silicic large igneous province (SLIP) hypothesis. , 2009 .

[132]  T. Thordarson,et al.  Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section , 2009 .

[133]  A. Anbar,et al.  Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia , 2009 .

[134]  P. Hoffman Pan‐glacial—a third state in the climate system , 2009 .

[135]  N. Arndt,et al.  Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event , 2009, Nature.

[136]  C. Ganino,et al.  Climate changes caused by degassing of sediments during the emplacement of large igneous provinces , 2009 .

[137]  J. Fitton,et al.  The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis , 2009 .

[138]  S. Planke,et al.  Siberian gas venting and the end-Permian environmental crisis , 2008 .

[139]  B. Haq,et al.  A Chronology of Paleozoic Sea-Level Changes , 2008, Science.

[140]  J. Ogg,et al.  The Concise Geologic Time Scale , 2008 .

[141]  S. Turgeon,et al.  Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode , 2008, Nature.

[142]  L. Kump,et al.  Oceanic Euxinia in Earth History: Causes and Consequences , 2008 .

[143]  K. Subbarao,et al.  Determination of rapid Deccan eruptions across the Cretaceous‐Tertiary boundary using paleomagnetic secular variation: Results from a 1200‐m‐thick section in the Mahabaleshwar escarpment , 2008 .

[144]  A. Coe,et al.  Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic , 2008 .

[145]  N. Eyles Glacio-epochs and the supercontinent cycle after ∼ 3.0 Ga: Tectonic boundary conditions for glaciation , 2008 .

[146]  C. Wilson Supereruptions and Supervolcanoes: Processes and Products , 2008 .

[147]  Richard E. Ernst,et al.  Global record of 1600–700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents , 2008 .

[148]  K. Karlstrom,et al.  Assembly, configuration, and break-up history of Rodinia: A synthesis , 2008 .

[149]  H. Sheth ‘Large Igneous Provinces (LIPs)’: Definition, recommended terminology, and a hierarchical classification , 2007 .

[150]  S. Bajpai,et al.  40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration , 2007 .

[151]  P. Ryberg,et al.  Tree growth at polar latitudes based on fossil tree ring analysis , 2007 .

[152]  A. Larionov,et al.  The polygenous-polychronous nature of zircons and the problem of the age of the Barangulov gabbro-granite complex , 2007 .

[153]  Anders Malthe-Sørenssen,et al.  Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming , 2007 .

[154]  H. Tokuyama,et al.  Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2 , 2007 .

[155]  M. Simms Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: Evidence for earthquake or impact? , 2007 .

[156]  C. Vérati,et al.  Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic rifting processes and the Triassic–Jurassic biotic crisis , 2007 .

[157]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[158]  T. Thordarson,et al.  Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective , 2006 .

[159]  S. Self The effects and consequences of very large explosive volcanic eruptions , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[160]  Bjørn Jamtveit,et al.  Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa , 2006, Journal of the Geological Society.

[161]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[162]  R. Bambach PHANEROZOIC BIODIVERSITY MASS EXTINCTIONS , 2006 .

[163]  N. Sheldon Abrupt chemical weathering increase across the Permian-Triassic boundary , 2006 .

[164]  B. Taylor The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi , 2006 .

[165]  P. Brenchley,et al.  A late Ordovician (Hirnantian) karstic surface in a submarine channel, recording glacio‐eustatic sea‐level changes: Meifod, central Wales , 2006 .

[166]  A. Kerr,et al.  Oceanic LIPs: The kiss of death , 2005 .

[167]  T. Thordarson,et al.  Gas Fluxes from Flood Basalt Eruptions , 2005 .

[168]  P. Wignall,et al.  The Link between Large Igneous Province Eruptions and Mass Extinctions , 2005 .

[169]  I. Campbell Large Igneous Provinces and the Mantle Plume Hypothesis , 2005 .

[170]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.

[171]  G. Keller Impacts, volcanism and mass extinction: random coincidence or cause and effect? , 2005 .

[172]  W. Seyfried,et al.  Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers [rapid communication] , 2005 .

[173]  C. Vérati,et al.  The farthest record of the Central Atlantic Magmatic Province into West Africa craton: Precise 40Ar/39Ar dating and geochemistry of Taoudenni basin intrusives (northern Mali) , 2005 .

[174]  A. Pavlov,et al.  Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia , 2005 .

[175]  A. Saunders,et al.  Volcanism, impact and mass extinctions: incredible or credible coincidences? , 2005 .

[176]  P. Wignall,et al.  Discussion on sea-level change and facies development across potential Triassic–Jurassic boundary horizons, SW Britain , 2004, Journal of the Geological Society.

[177]  P. Renne,et al.  The Central Atlantic Magmatic Province at the Triassic–Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism , 2004 .

[178]  D. Millward The Caradoc volcanoes of the English Lake District , 2004 .

[179]  L. Zaninetti,et al.  Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis , 2004 .

[180]  R. Muller,et al.  Cycles in fossil diversity , 2004, Nature.

[181]  Carlo Barbante,et al.  Eight glacial cycles from an Antarctic ice core , 2004, Nature.

[182]  W. Bleeker Towards a ‘natural’ time scale for the Precambrian – A proposal , 2004 .

[183]  S. Hesselbo,et al.  Sea-level change and facies development across potential Triassic–Jurassic boundary horizons, SW Britain , 2004, Journal of the Geological Society.

[184]  T. Worsley,et al.  Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery , 2004 .

[185]  M. Coffin,et al.  Impact Origin for the Greater Ontong Java Plateau? Geophysical and Geodynamic Evidence. , 2004 .

[186]  L. François,et al.  Basalt weathering laws and the impact of basalt weathering on the global carbon cycle , 2003 .

[187]  H. Melosh,et al.  Impacts do not initiate volcanic eruptions: Eruptions close to the crater , 2003 .

[188]  J. Evans,et al.  U–Pb chronology and duration of late Ordovician magmatism in the English Lake District , 2003, Journal of the Geological Society.

[189]  G. Ramstein,et al.  The Sturtian ‘snowball’ glaciation: fire and ice , 2003 .

[190]  N. White,et al.  40 Ar/ 39 Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps , 2003 .

[191]  G. D. Price,et al.  Impact induced melting and the development of large igneous provinces , 2002 .

[192]  R. Ernst,et al.  Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces , 2002 .

[193]  A. Jahren The biogeochemical consequences of the mid-Cretaceous superplume , 2002 .

[194]  D. Beerling,et al.  Biogeochemical constraints on the Triassic‐Jurassic boundary carbon cycle event , 2002 .

[195]  J. Pálfy,et al.  Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary , 2001 .

[196]  G. Retallack A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles , 2001, Nature.

[197]  P. Wignall Large igneous provinces and mass extinctions , 2001 .

[198]  D. D. Marais,et al.  Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? , 2001 .

[199]  S. Planke,et al.  Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins , 2000 .

[200]  L. Kump,et al.  CHEMICAL WEATHERING ,A TMOSPHERIC CO 2 , AND CLIMATE , 2000 .

[201]  A. Robock Volcanic eruptions and climate , 2000 .

[202]  D. Abbott,et al.  Plume‐related mafic volcanism and the deposition of banded iron formation , 1999 .

[203]  K. Pande,et al.  Carbonatite alkaline magmatism associated with continental flood basalts at stratigraphic boundaries: Cause for mass extinctions , 1999 .

[204]  Â. Min,et al.  Extensive 200-million-year-Old continental flood basalts of the central atlantic magmatic province , 1999, Science.

[205]  R. Rainbird,et al.  U–Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia–Siberia connection , 1998 .

[206]  P. Silver,et al.  Dynamic topography, plate driving forces and the African superswell , 1998, Nature.

[207]  D. L. Anderson,et al.  Edge-driven convection , 1998 .

[208]  A. Kerr Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? , 1998, Journal of the Geological Society.

[209]  Thomas J. Algeo,et al.  Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events , 1998 .

[210]  J. Kirschvink,et al.  Low-latitude glaciation in the Palaeoproterozoic era , 1997, Nature.

[211]  S. Kamo,et al.  A minimum UPb age for Siberian flood-basalt volcanism , 1996 .

[212]  M. Okamura,et al.  Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan , 1994 .

[213]  O. Eldholm,et al.  Large igneous provinces: crustal structure, dimensions, and external consequences , 1994 .

[214]  Olav Eldholm,et al.  Large Igneous Provinces , 1993, Encyclopedia of Ocean Sciences.

[215]  R. Stothers Flood basalts and extinction events , 1993 .

[216]  R. Rainbird,et al.  Nature and timing of Franklin igneous events, Canada: Implications for a Late Proterozoic mantle plume and the break-up of Laurentia , 1992 .

[217]  M. Pilkington,et al.  Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico , 1991 .

[218]  M. Raymo Geochemical evidence supporting T. C. Chamberlin's theory of glaciation , 1991 .

[219]  L. Heaman,et al.  Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening , 1989 .

[220]  G. Schubert,et al.  Crustal volumes of the continents and of oceanic and continental submarine plateaus , 1989 .

[221]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[222]  D. Raup,et al.  Mass Extinctions in the Marine Fossil Record , 1982, Science.

[223]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[224]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[225]  A. P. Low Geological Survey of Canada , 1885, Nature.

[226]  K. Föllmi,et al.  Mercury enrichments in lower Aptian sediments support the link between Ontong Java large igneous province activity and oceanic anoxic episode 1a , 2017 .

[227]  G. Keller,et al.  Paleocene-Eocene Thermal Maximum Triggered by Volcanism Evidence from Mercury Anomalies , 2016 .

[228]  G. Keller,et al.  Upheavals during the Late Maastrichtian: Volcanism, climate and faunal events preceding the end-Cretaceous mass extinction , 2016 .

[229]  H. Svensen,et al.  The effects of large igneous provinces on the global carbon and sulphur cycles , 2016 .

[230]  G. Keller,et al.  Timing and Tempo of Deccan Volcanism Revealed by Mercury Anomalies , 2016 .

[231]  David S. Jones,et al.  DID VOLCANISM TRIGGER THE LATE ORDOVICIAN MASS EXTINCTION? MERCURY DATA FROM SOUTH CHINA , 2016 .

[232]  J. Spangenberg,et al.  The last 250 kyr before the end-Cretaceous Mass Extinction , 2015 .

[233]  J. Besse,et al.  Volcanism and Global Environmental Change: Evidence for volcanism triggering extinctions: a short history of IPGP contributions with emphasis on paleomagnetism , 2015 .

[234]  M. K. Bensalah,et al.  Assessing the causes of the end-Triassic biotic crisis: a review , 2014 .

[235]  Y. Goddéris,et al.  The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate , 2014 .

[236]  A. Kerr 4.18 – Oceanic Plateaus , 2014 .

[237]  A. Bekker,et al.  Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry , 2014 .

[238]  J. Lamarque,et al.  Acid rain and ozone depletion from pulsed Siberian Traps magmatism , 2014 .

[239]  J. Schnoor Ocean acidification. , 2013, Environmental science & technology.

[240]  S. Jowitt,et al.  Large igneous provinces (LIPs) and metallogeny , 2013 .

[241]  J. Kasting,et al.  A Chronostratigraphic Division of the Precambrian: Possibilities and Challenges , 2012 .

[242]  H. Sanei,et al.  Latest Permian mercury anomalies , 2012 .

[243]  James G. Ogg,et al.  The Geologic Time Scale 2012 , 2012 .

[244]  M. Beyth,et al.  From Volcanic Winter to Snowball Earth: An Alternative Explanation for Neoproterozoic Biosphere Stress , 2008 .

[245]  Richard E. Ernst,et al.  Revised definition of Large Igneous Provinces (LIPs) , 2008 .

[246]  Y. Dilek,et al.  Links between ophiolites and Large Igneous Provinces (LIPs) in Earth history: Introduction , 2008 .

[247]  Wang Xiaofeng,et al.  Asteroid breakup linked to the Great Ordovician Biodiversification Event , 2008 .

[248]  P. Wignall,et al.  The end-Triassic and Early Jurassic mass extinction records in the British Isles , 2008 .

[249]  G. Foulger The “plate” model for the genesis of melting anomalies , 2007 .

[250]  W. Bleeker A Geologic Time Scale 2004: Toward a “natural” Precambrian time scale , 2005 .

[251]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[252]  S. Planke,et al.  Hydrothermal vent complexes associated with sill intrusions in sedimentary basins , 2004, Geological Society, London, Special Publications.

[253]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[254]  D. Kent,et al.  Cyclo-, Magneto-, and Bio-Stratigraphic Constraints on the Duration of the CAMP Event and its Relationship to the Triassic-Jurassic Boundary , 2003 .

[255]  Alan Robock,et al.  Volcanism and the Earth's Atmosphere , 2003 .

[256]  P. Renne,et al.  On the ages of flood basalt events , 2003 .

[257]  P. Renne,et al.  On the ages of flood basalt events Sur l ’ âge des trapps basaltiques , 2003 .

[258]  D. Abbott,et al.  Oceanic upwelling and mantle-plume activity: Paleomagnetic tests of ideas on the source of the Fe in early Precambrian iron formations , 2001 .

[259]  C. Covey Earth's climate: past and future , 2001 .

[260]  V. Courtillot,et al.  Evolutionary Catastrophes: The Science of Mass Extinction , 1999 .

[261]  C. Marshall,et al.  Mass Extinctions and Their Aftermath , 1997 .

[262]  A. Okulitch Proposals for time classification and correlation of precambrian rocks and events in Canada and adjacent areas of the Canadian Shield. part 3: a precambrian time chart for the Geological Survey Atlas of Canada , 1988 .

[263]  J. Sepkoski Phanerozoic Overview of Mass Extinction , 1986 .

[264]  C. H. Stockwell Proposals for time classification and correlation of precambrian rocks and events in Canada and adjacent areas of the Canadian Shield part 1 : a time classification of precambrian rocks and events , 1982 .