Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance

The objective of this article is to introduce the tools to analyze the contrast imaging problem in Nuclear Magnetic Resonance. Optimal trajectories can be selected among extremal solutions of the Pontryagin Maximum Principle applied to this Mayer type optimal problem. Such trajectories are associated to the question of extremizing the transfer time. Hence the optimal problem is reduced to the analysis of the Hamiltonian dynamics related to singular extremals and their optimality status. This is illustrated by using the examples of cerebrospinal fluid/water and grey/white matter of cerebrum.

[1]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[2]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[3]  Monique Chyba,et al.  Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case , 2008, IEEE Transactions on Automatic Control.

[4]  J V Hajnal,et al.  MRI: use of the inversion recovery pulse sequence. , 1998, Clinical radiology.

[5]  Dominique Sugny,et al.  Field‐free molecular alignment of CO2 mixtures in presence of collisional relaxation , 2008 .

[6]  Mazyar Mirrahimi,et al.  Singular Perturbations and Lindblad-Kossakowski Differential Equations , 2008, IEEE Transactions on Automatic Control.

[7]  Pierre Rouchon,et al.  Controllability Issues for Continuous-Spectrum Systems and Ensemble Controllability of Bloch Equations , 2009, 0903.2720.

[8]  Joseph V. Hajnal,et al.  Mri: Use of the inversion recovery pulse sequence , 1998 .

[9]  Burkhard Luy,et al.  Tailoring the optimal control cost function to a desired output: application to minimizing phase errors in short broadband excitation pulses. , 2005, Journal of magnetic resonance.

[10]  M. Chyba,et al.  Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.

[11]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[12]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[13]  Bernard Bonnard,et al.  The energy minimization problem for two-level dissipative quantum systems , 2010 .

[14]  K. Chary,et al.  NMR in Biological Systems: From Molecules to Human , 2008 .

[15]  Bernard Bonnard,et al.  Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Integrable Case , 2009, SIAM J. Control. Optim..

[16]  Y Zhang,et al.  Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.

[17]  M. Hayt MRI in practice , 1999 .

[18]  Mark Bydder,et al.  Optimization of RF excitation to maximize signal and T2 contrast of tissues with rapid transverse relaxation , 2010, Magnetic resonance in medicine.

[19]  Burkhard Luy,et al.  Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude. , 2004, Journal of magnetic resonance.

[20]  D. Sugny,et al.  Simultaneous time-optimal control of the inversion of two spin-(1/2) particles , 2010, 1009.1077.

[21]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[22]  S. Glaser,et al.  Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation. , 2011, The Journal of chemical physics.

[23]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[24]  A. Krener The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .

[25]  Richard R. Ernst,et al.  The International Series of Monographs on Chemistry, Vol. 14: Principles of Nuclear Magnetic Resonance in One and Two Dimensions , 1987 .

[26]  D. Sugny,et al.  Time-optimal control of a two-level dissipative quantum system , 2007, 0708.3794.

[27]  I. Kupka,et al.  GEOMETRIC THEORY OF EXTREMALS IN OPTIMAL CONTROL PROBLEMS: I THE FOLD AND MAXWELL CASE , 1987 .

[28]  Burkhard Luy,et al.  Optimal control design of excitation pulses that accommodate relaxation. , 2007, Journal of magnetic resonance.

[29]  K.V.R. Chary and Girjesh Govil,et al.  NMR in biological systems , 2008 .

[30]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[31]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .