Integrative analysis of survival-associated gene sets in breast cancer

[1]  Chao Cheng,et al.  E2F4 regulatory program predicts patient survival prognosis in breast cancer , 2014, Breast Cancer Research.

[2]  S. Drăghici,et al.  Analysis and correction of crosstalk effects in pathway analysis , 2013, Genome research.

[3]  Chun-Chi Liu,et al.  REACTIN: Regulatory activity inference of transcription factors underlying human diseases with application to breast cancer , 2013, BMC Genomics.

[4]  Stefan Glück,et al.  Molecular Profiling for Breast Cancer: A Comprehensive Review , 2013, Biomarkers in cancer.

[5]  Marketa Zvelebil,et al.  ROCK: a resource for integrative breast cancer data analysis , 2013, Breast Cancer Research and Treatment.

[6]  Arnoldo Frigessi,et al.  Combining Gene Signatures Improves Prediction of Breast Cancer Survival , 2011, PloS one.

[7]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[8]  Y. Qi,et al.  Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. , 2011, Journal of the National Cancer Institute.

[9]  Mitch Dowsett,et al.  Current and emerging biomarkers in breast cancer: prognosis and prediction. , 2010, Endocrine-related cancer.

[10]  A. Nobel,et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  H. Kölbl,et al.  The humoral immune system has a key prognostic impact in node-negative breast cancer. , 2008, Cancer research.

[12]  R. Salunga,et al.  A Five-Gene Molecular Grade Index and HOXB13:IL17BR Are Complementary Prognostic Factors in Early Stage Breast Cancer , 2008, Clinical Cancer Research.

[13]  Fengzhu Sun,et al.  Inferring activity changes of transcription factors by binding association with sorted expression profiles , 2007, BMC Bioinform..

[14]  J. Bergh,et al.  Strong Time Dependence of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Independent Validation Series , 2007, Clinical Cancer Research.

[15]  I. Ellis,et al.  A gene-expression signature to predict survival in breast cancer across independent data sets , 2007, Oncogene.

[16]  G. Sherlock,et al.  The prognostic role of a gene signature from tumorigenic breast-cancer cells. , 2007, The New England journal of medicine.

[17]  I. Ellis,et al.  A consensus prognostic gene expression classifier for ER positive breast cancer , 2006, Genome Biology.

[18]  A. Weeraratna,et al.  Interleukin-1 alpha mediates the growth proliferative effects of transforming growth factor-beta in p21 null MCF-10A human mammary epithelial cells , 2006, Oncogene.

[19]  L. Ein-Dor,et al.  Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. J. van de Vijver,et al.  Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. , 2006, Journal of the National Cancer Institute.

[21]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Hall,et al.  An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  G. Glinsky,et al.  Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. , 2005, The Journal of clinical investigation.

[24]  Howard Y. Chang,et al.  Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[26]  Stefan Michiels,et al.  Prediction of cancer outcome with microarrays: a multiple random validation strategy , 2005, The Lancet.

[27]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[28]  P. Brown,et al.  Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Wei Wang,et al.  A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. , 2004, Cancer cell.

[30]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[31]  Emanuel Petricoin,et al.  Molecular profiling of human cancer , 2000, Nature Reviews Genetics.

[32]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[33]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[34]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[35]  佐治 重衡,et al.  What's going on 乳癌 A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, et al. Cancer Cell. 2004;5:607-16. PMID:15193263--術後補助療法におけるタモキシフェンへの反応性は2つの遺伝子レベルの測定によって予測しうることを示した論文 , 2005 .

[36]  J. Haerting,et al.  Gene-expression signatures in breast cancer. , 2003, The New England journal of medicine.

[37]  Van,et al.  A gene-expression signature as a predictor of survival in breast cancer. , 2002, The New England journal of medicine.