Carbon nanotube optoelectronics

Semiconducting single-walled carbon nanotubes are direct-gap materials thatprovide ideal systems for the study of photophysics in one-dimension. Whiletheir excited states involve strongly bound 1D excitons, their single atomiclayer structure makes their optical properties especially sensitive to theirenvironment and external fields, thus allowing for their controlled modification. Inthis chapter we review the properties of the excited states of nanotubes,the mechanisms of their production and detection, focusing particularly onelectrically-induced excitation by ambipolar electron-hole recombination and impactexcitation by hot carriers. Radiative decay of photo-excited and electron-excited(electroluminescence) emission as well as the non-radiative decay to free carriersleading to photoconductivity are discussed. The influence of external electricfields and of environmental interactions on excited nanotubes is considered.Finally, the possible technological uses of carbon nanotubes as nanometer scalelight sources and photocurrent and photovoltage detectors are discussed.

[1]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[2]  P. C. Schmidt,et al.  H. A. Bethe and E. Salpeter: Quantum Mechanics of One‐ and Two‐Electron atoms. Plenum/Rosetta, New York 1977. 370 Seiten, Preis: $ 8.95. , 1978 .

[3]  Eric Pop,et al.  Negative differential conductance and hot phonons in suspended nanotube molecular wires. , 2005, Physical review letters.

[4]  Jerry Tersoff,et al.  Novel Length Scales in Nanotube Devices , 1999 .

[5]  H. Dai,et al.  Molecular photodesorption from single-walled carbon nanotubes , 2001 .

[6]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[7]  Phaedon Avouris,et al.  Scaling of excitons in carbon nanotubes. , 2004, Physical review letters.

[8]  S. Wind,et al.  Carbon nanotube electronics , 2003, Digest. International Electron Devices Meeting,.

[9]  C L Kane,et al.  Ratio problem in single carbon nanotube fluorescence spectroscopy. , 2003, Physical review letters.

[10]  S. Mazumdar,et al.  Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. , 2004, Physical Review Letters.

[11]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.

[12]  Theoretical investigation on photoconductivity of single intrinsic carbon nanotubes , 2006 .

[13]  Aaron Stein,et al.  Hot Carrier Electroluminescence from a Single Carbon Nanotube , 2004 .

[14]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[15]  Louis E. Brus,et al.  Controlling Energy-Level Alignments at Carbon Nanotube/Au Contacts , 2003 .

[16]  T. Pedersen Variational approach to excitons in carbon nanotubes , 2003 .

[17]  Paul L. McEuen,et al.  Transport in carbon nanotube p-i-n diodes , 2006 .

[18]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[19]  Phaedon Avouris,et al.  Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes , 2005, Science.

[20]  Leonas Valkunas,et al.  Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation. , 2005, Physical review letters.

[21]  Klaus Kern,et al.  Photocurrent imaging of charge transport barriers in carbon nanotube devices. , 2005, Nano letters.

[22]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[23]  P. Avouris,et al.  Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. , 2007, Nano letters.

[24]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[25]  V. Klimov,et al.  Structure of excited-state transitions of individual semiconductor nanocrystals probed by photoluminescence excitation spectroscopy. , 2004, Physical review letters.

[26]  Michael S. Fuhrer,et al.  High-Mobility Nanotube Transistor Memory , 2002 .

[27]  Cees Dekker,et al.  Transport through the interface between a semiconducting carbon nanotube and a metal electrode , 2002 .

[28]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[29]  M. Heben,et al.  Analysis of photoluminescence from solubilized single-walled carbon nanotubes , 2005 .

[30]  M. Radosavljevic,et al.  Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors , 2002 .

[31]  Phaedon Avouris,et al.  Mobile ambipolar domain in carbon-nanotube infrared emitters. , 2004, Physical review letters.

[32]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[33]  Sergei Tretiak,et al.  Third and fourth optical transitions in semiconducting carbon nanotubes. , 2007, Physical review letters.

[34]  Marcus Freitag,et al.  Controlled creation of a carbon nanotube diode by a scanned gate , 2001 .

[35]  Electrically driven thermal light emission from individual single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[36]  Ultra-fast optical spectroscopy of micelle-suspended single-walled carbon nanotubes , 2003, cond-mat/0308233.

[37]  V. C. Moore,et al.  Ultrafast Optical Spectroscopy of Micelle-Suspended Single-Walled Carbon Nanotubes , 2004 .

[38]  E. Chang,et al.  Excitons in carbon nanotubes: an ab initio symmetry-based approach. , 2004, Physical review letters.

[39]  Miller,et al.  Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect. , 1986, Physical review. B, Condensed matter.

[40]  Device modeling of long-channel nanotube electro-optical emitter , 2004, cond-mat/0411537.

[41]  Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes , 2005, cond-mat/0508232.

[42]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[43]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[44]  D. Nezich,et al.  Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. , 2005, Physical review letters.

[45]  R. Pomraenke,et al.  Exciton binding energies in carbon nanotubes from two-photon photoluminescence , 2005 .

[46]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[47]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[48]  Phaedon Avouris,et al.  Carbon nanotube electronics and optoelectronics , 2004 .

[49]  J. U. Lee,et al.  Carbon nanotube p-n junction diodes , 2004 .

[50]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[51]  J. Lefebvre,et al.  Temperature-dependent photoluminescence from single-walled carbon nanotubes , 2004 .

[52]  R. Smalley,et al.  Ultrafast carrier dynamics in single-walled carbon nanotubes probed by feintosecond spectroscopy , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[53]  Phaedon Avouris,et al.  Electron-phonon interaction and transport in semiconducting carbon nanotubes. , 2005, Physical review letters.

[54]  Eric Pop,et al.  ELECTRICAL TRANSPORT PROPERTIES AND FIELD EFFECT TRANSISTORS OF CARBON NANOTUBES , 2006 .

[55]  Louis E. Brus,et al.  Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes , 2004 .

[56]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[57]  Gordana Dukovic,et al.  Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. , 2004, Physical review letters.

[58]  G. Lanzani,et al.  Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. , 2005, Physical review letters.

[59]  Direct experimental evidence of exciton-phonon bound states in carbon nanotubes. , 2005, Physical review letters.

[60]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[61]  Sohrab Ismail-Beigi,et al.  Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. , 2005, Physical review letters.

[62]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[63]  Phaedon Avouris,et al.  Electrically excited, localized infrared emission from single carbon nanotubes. , 2006, Nano letters.

[64]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[65]  Klaus Kern,et al.  Photoelectronic transport imaging of individual semiconducting carbon nanotubes , 2004 .

[66]  Electron interactions and scaling relations for optical excitations in carbon nanotubes. , 2004, Physical review letters.

[67]  Robert C. Haddon,et al.  Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films , 2006, Science.

[68]  Impact Excitation by Hot Carriers in Carbon Nanotubes , 2006, cond-mat/0608678.

[69]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[70]  J. Robertson,et al.  Erratum: Electron transport and hot phonons in carbon nanotubes (Phys. Rev. Lett. (2005) 95 (236802)) , 2005 .

[71]  Phaedon Avouris,et al.  Radiative lifetime of excitons in carbon nanotubes. , 2005, Nano letters.

[72]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[73]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[74]  Phaedon Avouris Carbon nanotube electronics and opto-electronics , 2004 .

[75]  Jacques Lefebvre,et al.  Photoluminescence imaging of suspended single-walled carbon nanotubes. , 2006, Nano letters.

[76]  S. Doorn,et al.  Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions. , 2005, Physical review letters.

[77]  Jing Guo,et al.  Carrier transport and light-spot movement in carbon-nanotube infrared emitters , 2005 .

[78]  P. Avouris,et al.  Doping and phonon renormalization in carbon nanotubes. , 2007, Nature nanotechnology.

[79]  Francesco Mauri,et al.  Electron transport and hot phonons in carbon nanotubes. , 2005, Physical review letters.

[80]  T. Ando Effects of Valley Mixing and Exchange on Excitons in Carbon Nanotubes with Aharonov-Bohm Flux(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties) , 2006 .

[81]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[82]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[83]  M. Radosavljevic,et al.  Drain voltage scaling in carbon nanotube transistors , 2003, cond-mat/0305570.

[84]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[85]  J. U. Lee,et al.  Photovoltaic effect in ideal carbon nanotube diodes , 2005 .

[86]  C. Kane,et al.  Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. , 2004, Physical review letters.

[87]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[88]  P. Avouris,et al.  Photoconductivity of Single Carbon Nanotubes , 2003 .

[89]  R. Doyon,et al.  Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. , 2006, Physical review letters.

[90]  S. Louie,et al.  Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes , 2004 .

[91]  Electronic structure and dynamics of optically excited single-wall carbon nanotubes , 2003, cond-mat/0310109.

[92]  J. Tersoff,et al.  Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. , 2005, Physical review letters.

[93]  Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking. , 2007, Nano letters.

[94]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[95]  J Kono,et al.  Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. , 2004, Physical review letters.

[96]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[97]  M. Sfeir,et al.  Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. , 2005, Nano letters.

[98]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[99]  Phaedon Avouris,et al.  Electronics with carbon nanotubes , 2007 .

[100]  Christoph Lienau,et al.  Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. , 2005, Physical review letters.

[101]  Phaedon Avouris,et al.  Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States. , 2005, Nano letters.