Physics-Driven Learning of Wasserstein GAN for Density Reconstruction in Dynamic Tomography

ZHISHEN HUANG1,★, MARC KLASKY2,♣, TREVOR WILCOX3, , AND SAIPRASAD RAVISHANKAR1,4,† 1Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA. 2Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. 3Theoretical Design Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. 4Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824 USA. huangz78@msu.edu ♣mklasky@lanl.gov wilcox@lanl.gov †ravisha3@msu.edu

[1]  K. Klingenbeck,et al.  A general framework and review of scatter correction methods in cone beam CT. Part 2: scatter estimation approaches. , 2011, Medical physics.

[2]  Jeffrey A. Fessler,et al.  Statistical image reconstruction for polyenergetic X-ray computed tomography , 2002, IEEE Transactions on Medical Imaging.

[3]  N. Estre,et al.  Evaluation of a scattering correction method for high energy tomography , 2018 .

[4]  Michael T. McCann,et al.  Local models for scatter estimation and descattering in polyenergetic X-ray tomography. , 2020, Optics express.

[5]  Fred A. Hamprecht,et al.  Accurate and versatile 3D segmentation of plant tissues at cellular resolution , 2020, bioRxiv.

[6]  Jean Michel Létang,et al.  Convolution-based scatter correction using kernels combining measurements and Monte Carlo simulations. , 2017, Journal of X-ray science and technology.

[7]  Morteza Mardani,et al.  Wasserstein GANs for MR Imaging: From Paired to Unpaired Training , 2021, IEEE Transactions on Medical Imaging.

[8]  Klaus Klingenbeck,et al.  A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches. , 2011, Medical physics.

[9]  Albert Macovski,et al.  Scatter Considerations in Fan Beam Computerized Tomographic Systems , 1976, IEEE Transactions on Nuclear Science.

[10]  J. Star-Lack,et al.  Improved scatter correction using adaptive scatter kernel superposition , 2010, Physics in medicine and biology.

[11]  Marc Kachelrieß,et al.  Deep Scatter Estimation (DSE): Accurate Real-Time Scatter Estimation for X-Ray CT Using a Deep Convolutional Neural Network , 2018, Journal of Nondestructive Evaluation.

[12]  J. Radon On the determination of functions from their integral values along certain manifolds , 1986, IEEE Transactions on Medical Imaging.

[13]  R. A. Forster,et al.  MCNP Version 6.2 Release Notes , 2018 .