An empirically derived three-dimensional Laplace resonance in the Gliese 876 planetary system

We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 based solely on Doppler measurements and demanding long-term orbital stability. Our data set incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, High Accuracy Radial velocity Planet Searcher (HARPS), and Keck HIgh Resolution Echelle Spectrometer (HIRES) as well as previously unpublished HIRES velocities. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. We find that a four-planet model is preferred over a three-planet model. Next, we apply a Newtonian Markov chain Monte Carlo algorithm to perform a Bayesian analysis of the planet masses and orbits using an N-body model in three-dimensional space. Based on the radial velocities alone, we find that a 99 per cent credible interval provides upper limits on the mutual inclinations for the three resonant planets (Φ_(cb) <6∘.20 for the cc and bb pair and Φ_(be) < 28∘.5 for the b and e pair). Subsequent dynamical integrations of our posterior sample find that the GJ 876 planets must be roughly coplanar (Φ_(cb) < 2∘.60 and Φ_(be) <7∘.87), suggesting that the amount of planet–planet scattering in the system has been low. We investigate the distribution of the respective resonant arguments of each planet pair and find that at least one argument for each planet pair and the Laplace argument librate. The libration amplitudes in our three-dimensional orbital model support the idea of the outer three planets having undergone significant past disc migration.

[1]  H. Nakai,et al.  Stability of the GJ 876 Planetary System , 2001 .

[2]  E. Ford,et al.  SECULAR ORBITAL DYNAMICS OF HIERARCHICAL TWO-PLANET SYSTEMS , 2010, 1004.1421.

[3]  Arpita Roy,et al.  Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581 , 2014, Science.

[4]  M. Lee Diversity and Origin of 2 : 1 Orbital Resonances in Extrasolar Planetary Systems , 2003 .

[5]  F. Rasio,et al.  Gas Disks to Gas Giants: Simulating the Birth of Planetary Systems , 2008, Science.

[6]  Debra A. Fischer,et al.  RETIRED A STARS AND THEIR COMPANIONS. VI. A PAIR OF INTERACTING EXOPLANET PAIRS AROUND THE SUBGIANTS 24 SEXTANIS AND HD 200964 , 2010, 1007.4552.

[7]  Evolution of planetary systems in resonance , 2003, astro-ph/0310321.

[8]  Andrea Milani,et al.  On topological stability in the general three-body problem , 1983 .

[9]  S. Renner,et al.  Detection of Laplace-resonant three-planet systems from transit timing variations , 2013, 1301.2891.

[10]  E. Ford,et al.  CHARACTERIZING THE ORBITAL AND DYNAMICAL STATE OF THE HD 82943 PLANETARY SYSTEM WITH KECK RADIAL VELOCITY DATA , 2013, 1306.0687.

[11]  C. Terquem,et al.  Evolution of eccentricity and orbital inclination of migrating planets in 2:1 mean motion resonance , 2014, 1406.2189.

[12]  Extrasolar Planets in Mean-Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions , 2002, astro-ph/0210577.

[13]  Kevin P. Rauch,et al.  Dynamical Chaos in the Wisdom-Holman Integrator: Origins and Solutions , 1999 .

[14]  M. Holman,et al.  DYNAMICAL EVOLUTION OF MULTI-RESONANT SYSTEMS: THE CASE OF GJ 876 , 2015, 1504.00051.

[15]  P. Armitage,et al.  Hydrodynamic outcomes of planet scattering in transitional discs , 2011, 1108.5382.

[16]  Diversity and Origin of 2:1 Orbital Resonances in Extrasolar Planetary Systems , 2003, astro-ph/0401410.

[17]  Jack Wisdom,et al.  Symplectic Maps for the n-Body Problem: Stability Analysis , 1992 .

[18]  Jörg Peters,et al.  Swarm-NG: a CUDA Library for Parallel n-body Integrations with focus on Simulations of Planetary Systems , 2012, ArXiv.

[19]  J. Lissauer,et al.  Resonant Inclination Excitation of Migrating Giant Planets , 2003, astro-ph/0308112.

[20]  Eric B. Ford,et al.  A Bayesian Surrogate Model for Rapid Time Series Analysis and Application to Exoplanet Observations , 2011, 1107.4047.

[21]  E. Thommes A Safety Net for Fast Migrators: Interactions between Gap-opening and Sub-Gap-opening Bodies in a Protoplanetary Disk , 2005, astro-ph/0502427.

[22]  On disc driven inward migration of resonantly coupled planets with application to the system around GJ876 , 2001, astro-ph/0104432.

[23]  STABLE 1:2 RESONANT PERIODIC ORBITS IN ELLIPTIC THREE-BODY SYSTEMS , 2003, astro-ph/0301363.

[24]  Konstantin Batygin,et al.  DISSIPATIVE DIVERGENCE OF RESONANT ORBITS , 2012, 1204.2791.

[25]  Dynamics and Origin of the 2:1 Orbital Resonances of the GJ 876 Planets , 2001, astro-ph/0108104.

[26]  R. Paul Butler,et al.  A Pair of Resonant Planets Orbiting GJ 876 , 2001 .

[27]  E. Gerlach,et al.  Can GJ 876 host four planets in resonance? , 2012, 1202.5865.

[28]  ECCENTRICITY EVOLUTION OF MIGRATING PLANETS , 2001, astro-ph/0104475.

[29]  Sean N. Raymond,et al.  PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS , 2009, 0905.3741.

[30]  R. P. Butler,et al.  PRECISION RADIAL VELOCITIES WITH AN IODINE ABSORPTION CELL , 1992 .

[31]  Kevin France,et al.  THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS , 2012, 1212.4833.

[32]  R. P. Butler,et al.  DETERMINING SPECTROMETER INSTRUMENTAL PROFILES USING FTS REFERENCE SPECTRA , 1995 .

[33]  D. Ciardi,et al.  Stellar diameters and temperatures - V. 11 newly characterized exoplanet host stars , 2013, 1312.1792.

[34]  S. S. Olivier,et al.  Stellar Companions to Stars with Planets , 2002, astro-ph/0207538.

[35]  Barrie W Jones,et al.  The Orbits of terrestrial planets in the habitable zones of known exoplanetary systems , 2000 .

[36]  Junichiro Makino,et al.  On a time-symmetric Hermite integrator for planetary N-body simulation , 1998 .

[37]  E. Ford,et al.  RUN DMC: AN EFFICIENT, PARALLEL CODE FOR ANALYZING RADIAL VELOCITY OBSERVATIONS USING N-BODY INTEGRATIONS AND DIFFERENTIAL EVOLUTION MARKOV CHAIN MONTE CARLO , 2013, 1311.5229.

[38]  M. Zechmeister,et al.  The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms , 2009, 0901.2573.

[39]  Toronto,et al.  Modeling the resonant planetary system GJ 876 , 2005, astro-ph/0503579.

[40]  C. Giuppone,et al.  Dynamical analysis of the Gliese-876 Laplace resonance , 2013, 1305.6768.

[41]  The GJ 876 Planetary System: A Progress Report , 2004, astro-ph/0407441.

[42]  A. Jordán,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 OBSERVABILITY OF THE GENERAL RELATIVISTIC PRECESSION OF PERIASTRA IN EXOPLANETS , 2022 .

[43]  J. Jenkins,et al.  Improved signal detection algorithms for unevenly sampled data. Six signals in the radial velocity data for GJ876 , 2014, 1403.7646.

[44]  J. Lissauer,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876* , 2005, astro-ph/0510508.

[45]  Nuno C. Santos,et al.  SOAP 2.0: A TOOL TO ESTIMATE THE PHOTOMETRIC AND RADIAL VELOCITY VARIATIONS INDUCED BY STELLAR SPOTS AND PLAGES , 2014, 1409.3594.

[46]  John Asher Johnson,et al.  THE TRENDS HIGH-CONTRAST IMAGING SURVEY. IV. THE OCCURRENCE RATE OF GIANT PLANETS AROUND M DWARFS , 2013, 1307.5849.

[47]  Gregory L. Chambers Short-Term Dynamical Interactions Among Extrasolar Planets , 2001, astro-ph/0101423.

[48]  Andrzej J. Maciejewski,et al.  Global dynamics of the Gliese 876 planetary system , 2002 .

[49]  R. Paul Butler,et al.  THE HARPS-TERRA PROJECT. I. DESCRIPTION OF THE ALGORITHMS, PERFORMANCE, AND NEW MEASUREMENTS ON A FEW REMARKABLE STARS OBSERVED BY HARPS , 2012, 1202.2570.

[50]  M. López-Morales,et al.  HOW ECCENTRIC ORBITAL SOLUTIONS CAN HIDE PLANETARY SYSTEMS IN 2:1 RESONANT ORBITS , 2008, 0809.1275.

[51]  Gregory Laughlin,et al.  Effects of Secular Interactions in Extrasolar Planetary Systems , 2006, astro-ph/0606346.

[52]  E. Rivera,et al.  On the stability of test particles in extrasolar multiple planet systems , 2004, astro-ph/0406429.

[53]  J. Lissauer,et al.  Dynamical Models of the Resonant Pair of Planets Orbiting the Star GJ 876 , 2001 .

[54]  David M. Kipping,et al.  Parametrizing the exoplanet eccentricity distribution with the beta distribution. , 2013, 1306.4982.

[55]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[56]  Kevin France,et al.  TIME-RESOLVED ULTRAVIOLET SPECTROSCOPY OF THE M-DWARF GJ 876 EXOPLANETARY SYSTEM , 2012, 1204.1976.

[57]  N. Zakamska,et al.  Observational biases in determining extrasolar planet eccentricities in single‐planet systems , 2010, 1008.4152.

[58]  N. Gorelick,et al.  Mean Motion Resonances from Planet-Planet Scattering , 2008, 0809.3449.

[59]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[60]  Xavier Bonfils,et al.  Disentangling between stellar activity and planetary signals , 2010 .

[61]  E. Ford,et al.  PLANETESIMAL INTERACTIONS CAN EXPLAIN THE MYSTERIOUS PERIOD RATIOS OF SMALL NEAR-RESONANT PLANETS , 2014, 1406.0521.

[62]  PLANETARY MIGRATION AND ECCENTRICITY AND INCLINATION RESONANCES IN EXTRASOLAR PLANETARY SYSTEMS , 2004, 0907.4838.

[63]  RELATIVISTIC EFFECTS IN EXTRASOLAR PLANETARY SYSTEMS , 2006, astro-ph/0611861.

[64]  R. P. Butler,et al.  ATTAINING DOPPLER PRECISION OF 3 M S-1 , 1996 .

[65]  R. Paul Butler,et al.  THE LICK-CARNEGIE EXOPLANET SURVEY: A URANUS-MASS FOURTH PLANET FOR GJ 876 IN AN EXTRASOLAR LAPLACE CONFIGURATION , 2010, 1006.4244.

[66]  Daniel Angerhausen,et al.  EXONEST: BAYESIAN MODEL SELECTION APPLIED TO THE DETECTION AND CHARACTERIZATION OF EXOPLANETS VIA PHOTOMETRIC VARIATIONS , 2013, 1310.6764.

[67]  J. Bean,et al.  The architecture of the GJ 876 planetary system - Masses and orbital coplanarity for planets b and c , 2009, 0901.3144.

[68]  Jason T. Wright,et al.  The 55 Cancri planetary system: fully self-consistent N-body constraints and a dynamical analysis , 2014, 1402.6343.

[69]  A Planetary Companion to a Nearby M4 Dwarf, Gliese 876* , 1998, astro-ph/9807307.

[70]  J. Papaloizou,et al.  Outward migration of a super-Earth in a disc with outward propagating density waves excited by a giant planet , 2011, 1112.5432.

[71]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[72]  Astrophysics,et al.  DISENTANGLING PLANETS AND STELLAR ACTIVITY FOR GLIESE 667C , 2014, 1409.0021.

[73]  X. Delfosse,et al.  A Mass for the Extrasolar Planet Gliese 876b Determined from Hubble Space Telescope Fine Guidance Sensor 3 Astrometry and High-Precision Radial Velocities , 2002, astro-ph/0212101.

[74]  R. Jayawardhana,et al.  An Adaptive Optics Search for Companions to Stars with Planets , 2001, astro-ph/0110550.

[75]  J. Laskar,et al.  The HARPS search for southern extra-solar planets - XIX. Characterization and dynamics of the GJ 876 planetary system , 2010, 1001.4774.

[76]  A. Morbidelli,et al.  Early dynamical instabilities in the giant planet systems , 2013, 1303.6062.

[77]  Roman V. Baluev,et al.  Orbital structure of the GJ876 extrasolar planetary system based on the latest Keck and HARPS radial velocity data , 2011, 1105.4696.

[78]  J. Wisdom Symplectic Correctors for Canonical Heliocentric n-Body Maps , 2006 .

[79]  P. M. Cincotta,et al.  Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .

[80]  Guangyu Li,et al.  The Dynamical Simulations of the Planets Orbiting GJ 876 , 2002 .

[81]  Ji-lin Zhou,et al.  OCCURRENCE AND STABILITY OF APSIDAL RESONANCE IN MULTIPLE PLANETARY SYSTEMS , 2003, astro-ph/0308127.

[82]  D. Veras A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876 , 2007, 0709.0005.

[83]  Theoretical Implications of the PSR B1620?26 Triple System and Its Planet , 1999, astro-ph/9905347.

[84]  E. Agol,et al.  A SPITZER SEARCH FOR TRANSITS OF RADIAL VELOCITY DETECTED SUPER-EARTHS , 2013, 1310.7952.

[85]  Richard Greenberg,et al.  LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS , 2015, 1501.03231.

[86]  0 A pr 2 00 1 Eccentricity Evolution of Resonant Migrating Planets , .

[87]  K. Tsiganis,et al.  Kozai resonance in extrasolar systems , 2009 .