Parallel Rendering and Animation of Subdivision Surfaces on the Cell BE Processor

In this work we propose a parallel graphics pipeline for real-time interactive editing, processing and rendering of smooth surface primitives on the Cell BE. Our approach integrates a special patch-based geometry shader for subdivision surface targeting high-performance single-chip multi-core platforms. We describe a combination of algorithmic, architectural and back-end optimizations that enable us to render smooth subdivision surfaces in real-time and to dynamically deform 3D models represented by subdivision surfaces.

[1]  Maxim Kazakov,et al.  Catmull-Clark subdivision for geometry shaders , 2007, AFRIGRAPH '07.

[2]  Jörg Peters,et al.  A realtime GPU subdivision kernel , 2005, SIGGRAPH 2005.

[3]  Peter Schröder,et al.  Rapid evaluation of Catmull-Clark subdivision surfaces , 2002, Web3D '02.

[4]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[5]  Christian Rössl,et al.  Laplacian Framework for Interactive Mesh Editing , 2005, Int. J. Shape Model..

[6]  Lei Wang,et al.  Task Scheduling of Parallel Processing in CPU-GPU Collaborative Environment , 2008, 2008 International Conference on Computer Science and Information Technology.

[7]  David Ellsworth A new algorithm for interactive graphics on multicomputers , 1994, IEEE Computer Graphics and Applications.

[8]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[9]  Nikil D. Dutt,et al.  Brain Derived Vision Algorithm on High Performance Architectures , 2009, International Journal of Parallel Programming.

[10]  S. Asano,et al.  The design and implementation of a first-generation CELL processor , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[11]  Kun Zhou,et al.  Real-time KD-tree construction on graphics hardware , 2008, SIGGRAPH 2008.

[12]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[13]  Jörg Peters,et al.  Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets , 2008, Comput. Graph. Forum.

[14]  Montserrat Bóo,et al.  Efficient parallel implementations for surface subdivision , 2002, EGPGV.

[15]  Henry Fuchs,et al.  A sorting classification of parallel rendering , 2008, SIGGRAPH 2008.

[16]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[17]  Thomas W. Crockett,et al.  PARALLEL RENDERING , 1995 .

[18]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[19]  B. Flachs,et al.  A streaming processing unit for a CELL processor , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[20]  P. Schröder,et al.  Evaluation of Subdivision Surfaces on Programmable Graphics Hardware , 2003 .

[21]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[22]  Kun Zhou,et al.  Direct manipulation of subdivision surfaces on GPUs , 2007, SIGGRAPH 2007.

[23]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[24]  Samuel Williams,et al.  The potential of the cell processor for scientific computing , 2005, CF '06.

[25]  Volodymyr V. Kindratenko,et al.  The Bottom-Up Implementation of One MILC Lattice QCD Application on the Cell Blade , 2009, International Journal of Parallel Programming.

[26]  Pierre Manneback Solving Irregular Sparse Linear Systems On a Multicomputer Using the Cgnr Method , 1997, Int. J. High Perform. Comput. Appl..

[27]  I. Wald,et al.  Ray Tracing on the Cell Processor , 2006, 2006 IEEE Symposium on Interactive Ray Tracing.

[28]  Charles T. Loop,et al.  Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.

[29]  O. Sorkine Differential Representations for Mesh Processing , 2006 .