Decompositions of commutative monoid congruences and binomial ideals

Primary decomposition of commutative monoid congruences is insensitive to certain features of primary decomposition in commutative rings. These features are captured by the more refined theory of mesoprimary decomposition of congruences, introduced here complete with witnesses and associated prime objects. The combinatorial theory of mesoprimary decomposition lifts to arbitrary binomial ideals in monoid algebras. The resulting binomial mesoprimary decomposition is a new type of intersection decomposition for binomial ideals that enjoys computational efficiency and independence from ground field hypotheses. Binomial primary decompositions are easily recovered from mesoprimary decomposition.

[1]  The chain property for the associated primes of A-graded ideals , 2000, math/0004142.

[2]  Ezra Miller,et al.  Algorithms for graded injective resolutions and local cohomology over semigroup rings , 2005, J. Symb. Comput..

[3]  Takayuki Hibi,et al.  Binomial edge ideals and conditional independence statements , 2009, Adv. Appl. Math..

[4]  Ezra Miller,et al.  Bass Numbers of Semigroup-Graded Local Cohomology , 2000, math/0010003.

[5]  M. Graev Equations and series of hypergeometric type , 1995 .

[6]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[7]  A. Deitmar Schemes over \( \mathbb{F}_1 \) , 2005 .

[8]  Seth Sullivant,et al.  Lectures on Algebraic Statistics , 2008 .

[9]  R. Gilmer,et al.  Commutative Semigroup Rings , 1984 .

[10]  Thane E. Plambeck,et al.  Taming the wild in impartial combinatorial games , 2005 .

[11]  Bernd Sturmfels,et al.  Siphons in Chemical Reaction Networks , 2009, Bulletin of mathematical biology.

[12]  R. Stanley Combinatorics and commutative algebra , 1983 .

[13]  Ezra Miller,et al.  Homological methods for hypergeometric families , 2004, math/0406383.

[14]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[15]  Alicia Dickenstein,et al.  Combinatorics of binomial primary decomposition , 2008, 0803.3846.

[16]  Masanori Ishida The Local Cohomology Groups of an Affine Semigroup Ring , 1988 .

[17]  Alicia Dickenstein,et al.  Binomial D-modules , 2006, math/0610353.

[18]  Ezra Miller Affine stratifications from finite misère quotients , 2010, ArXiv.

[19]  Klaus G. Fischer,et al.  Mixed matrices and binomial ideals , 1996 .

[20]  L. O'Carroll,et al.  Finitely generated commutative semigroups , 1970, Glasgow Mathematical Journal.

[21]  Thomas Kahle,et al.  Decompositions of binomial ideals , 2009, 0906.4873.

[22]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[23]  A. Connes,et al.  On the notion of geometry over , 2010 .

[24]  A. Connes,et al.  On the notion of geometry over $\F_1$ , 2008, 0809.2926.

[25]  Serkan Hosten,et al.  Primary Decomposition of Lattice Basis Ideals , 2000, J. Symb. Comput..

[26]  Bernd Sturmfels,et al.  Lattice Walks and Primary Decomposition , 1998 .

[27]  Ezra Miller,et al.  Algorithms for lattice games , 2011, International Journal of Game Theory.

[28]  Aaron N. Siegel,et al.  Misère quotients for impartial games , 2006, J. Comb. Theory, Ser. A.

[29]  V. Korepin Generating functional of correlation functions for the nonlinear Schrödinger equation , 1989 .

[30]  Ezra Miller Theory and applications of lattice point methods for binomial ideals , 2010, ArXiv.

[31]  S. Iyengar Twenty-Four Hours of Local Cohomology , 2007 .

[32]  D. D. Anderson,et al.  Ideal theory in commutative semigroups , 1984 .

[33]  D. Rees,et al.  On semi-groups , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  Wolmer V. Vasconcelos,et al.  Computational methods in commutative algebra and algebraic geometry , 1997, Algorithms and computation in mathematics.

[35]  Thomas Kahle Decompositions of Binomial Ideals in Macaulay 2 , 2011 .

[36]  Ignacio Ojeda Binomial Canonical Decompositions of Binomial Ideals , 2010 .

[37]  Emmy Noether Idealtheorie in Ringbereichen , 1921 .

[38]  Ezra Miller Cohen-Macaulay quotients of normal semigroup rings via irreducible resolutions , 2001 .

[39]  Gunnar Fløystad Boij-Söderberg theory: Introduction and survey , 2011, 1106.0381.

[40]  Ignacio Ojeda Martínez de Castilla,et al.  Cellular Binomial Ideals. Primary Decomposition of Binomial Ideals , 2000, J. Symb. Comput..

[41]  Seth Sullivant,et al.  POSITIVE MARGINS AND PRIMARY DECOMPOSITION , 2012, 1201.2591.

[42]  Ming-Deh A. Huang,et al.  On the Mathematics of the Law of Mass Action , 2008, 0810.1108.

[43]  Ezra Miller,et al.  Lattice point methods for combinatorial games , 2009, Adv. Appl. Math..