A regularized interior point method for sparse optimal transport on graphs

In this work, the authors address the Optimal Transport (OT) problem on graphs using a proximal stabilized Interior Point Method (IPM). In particular, strongly leveraging on the induced primal-dual regularization, the authors propose to solve large scale OT problems on sparse graphs using a bespoke IPM algorithm able to suitably exploit primal-dual regularization in order to enforce scalability. Indeed, the authors prove that the introduction of the regularization allows to use sparsified versions of the normal Newton equations to inexpensively generate IPM search directions. A detailed theoretical analysis is carried out showing the polynomial convergence of the inner algorithm in the proposed computational framework. Moreover, the presented numerical results showcase the efficiency and robustness of the proposed approach when compared to network simplex solvers.

[1]  J. Gondzio,et al.  Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques , 2023, Journal of Optimization Theory and Applications.

[2]  J. Gondzio,et al.  An Interior Point–Inspired Algorithm for Linear Programs Arising in Discrete Optimal Transport , 2022, INFORMS Journal on Computing.

[3]  Wim Vanroose,et al.  Convergence analysis of a regularized inexact interior-point method for linear programming problems , 2021, 2105.01333.

[4]  Stefano Nasini,et al.  A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks , 2021, Eur. J. Oper. Res..

[5]  Gabriele Todeschi,et al.  Computation of Optimal Transport with Finite Volumes , 2020, ArXiv.

[6]  Michele Benzi,et al.  Fast Iterative Solution of the Optimal Transport Problem on Graphs , 2020, SIAM J. Sci. Comput..

[7]  Feng Luo,et al.  Community Detection on Networks with Ricci Flow , 2019, Scientific Reports.

[8]  Montacer Essid,et al.  Quadratically-Regularized Optimal Transport on Graphs , 2017, SIAM J. Sci. Comput..

[9]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[10]  Carsten Gottschlich,et al.  DOTmark – A Benchmark for Discrete Optimal Transport , 2016, IEEE Access.

[11]  J. Virieux,et al.  An optimal transport approach for seismic tomography: application to 3D full waveform inversion , 2016 .

[12]  Carsten Gottschlich,et al.  The Shortlist Method for Fast Computation of the Earth Mover's Distance and Finding Optimal Solutions to Transportation Problems , 2014, PloS one.

[13]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[14]  P. Armand,et al.  Uniform boundedness of the inverse of a Jacobian matrix arising in regularized interior-point methods , 2013, Math. Program..

[15]  Jacek Gondzio,et al.  Interior point methods 25 years later , 2012, Eur. J. Oper. Res..

[16]  Jacek Gondzio,et al.  Matrix-free interior point method , 2012, Comput. Optim. Appl..

[17]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[18]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[19]  M. Friedlander,et al.  A primal–dual regularized interior-point method for convex quadratic programs , 2010, Math. Program. Comput..

[20]  Desmond J. Higham,et al.  CONTEST: A Controllable Test Matrix Toolbox for MATLAB , 2009, TOMS.

[21]  Daniel A. Spielman,et al.  Faster approximate lossy generalized flow via interior point algorithms , 2008, STOC.

[22]  Haibin Ling,et al.  An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Shang-Hua Teng,et al.  Nearly-Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems , 2006, SIAM J. Matrix Anal. Appl..

[24]  L. Kantorovich On the Translocation of Masses , 2006 .

[25]  Matthieu Latapy,et al.  Efficient and simple generation of random simple connected graphs with prescribed degree sequence , 2005, J. Complex Networks.

[26]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[27]  C. Gentile,et al.  New Preconditioners for KKT Systems of Network Flow Problems , 2003, SIAM J. Optim..

[28]  Stefano Serra Capizzano,et al.  Spectral Analysis of (Sequences of) Graph Matrices , 2001, SIAM J. Matrix Anal. Appl..

[29]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[30]  James B. Orlin,et al.  A polynomial time primal network simplex algorithm for minimum cost flows , 1996, SODA '96.

[31]  Shinji Mizuno,et al.  A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..

[32]  M. Resende,et al.  An Implementation of the Dual Affine Scaling Algorithm for Minimum-Cost Flow on Bipartite Uncapacitated Networks , 1993, SIAM J. Optim..

[33]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[34]  F. Luque Asymptotic convergence analysis of the proximal point algorithm , 1984 .

[35]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[36]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[37]  Pengwen Chen,et al.  Matrix-free interior point methods for point set matching problems ∗ , 2022 .

[38]  Inge Li Gørtz,et al.  COMP251: Network flows , 2014 .

[39]  Janos Korzak,et al.  Convergence Analysis of Inexact Infeasible-Interior-Point Algorithms for Solving Linear Programming Problems , 2000, SIAM J. Optim..

[40]  L. Portugal,et al.  A truncated primal-infeasible dual-feasible network interior point method , 2000, Networks.

[41]  J. Gondzio,et al.  Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization , 1999 .

[42]  S. Bellavia Inexact Interior-Point Method , 1998 .

[43]  M. Saunders,et al.  SOLVING REGULARIZED LINEAR PROGRAMS USING BARRIER METHODS AND KKT SYSTEMS , 1996 .

[44]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[45]  Péter Kovács,et al.  Minimum-cost flow algorithms: an experimental evaluation , 2015, Optim. Methods Softw..

[46]  RockaJellm MONOTONE OPERATORS ASSOCIATED WITH SADDLE . FUNCTIONS AND MINIMAX PROBLEMS R . 1 ' , 2022 .