Single point electrodeposition of nickel for the dissymmetric decoration of carbon tubes

[1]  Byoung-Yong Chang,et al.  A Theoretical and Experimental Framework for Understanding Electrogenerated Chemiluminescence (ECL) Emission at Bipolar Electrodes , 2009 .

[2]  Kalayil Manian Manesh,et al.  Ultrafast catalytic alloy nanomotors. , 2008, Angewandte Chemie.

[3]  M. Pasquali,et al.  Antenna chemistry with metallic single-walled carbon nanotubes. , 2008, Journal of the American Chemical Society.

[4]  M. Delville,et al.  Controlled purification, solubilisation and cutting of carbon nanotubes using phosphomolybdic acid , 2008 .

[5]  L. Nyholm,et al.  Formation of molecular gradients on bipolar electrodes. , 2008, Angewandte Chemie.

[6]  Francesc Xavier Muñoz,et al.  On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes. , 2008, Analytical chemistry.

[7]  Ben L Feringa,et al.  Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. , 2008, Chemical communications.

[8]  M. Delville,et al.  Dissymmetric carbon nanotubes by bipolar electrochemistry. , 2008, Nano letters.

[9]  Liang Hong,et al.  Clusters of charged Janus spheres. , 2006, Nano letters.

[10]  I. Kretzschmar,et al.  Surface-anisotropic polystyrene spheres by electroless deposition. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[11]  A. Kuhn,et al.  Preparation and characterization of polyoxometalate-modified carbon nanosheets , 2006 .

[12]  Toru Torii,et al.  Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co‐Flow System , 2006 .

[13]  Serge Ravaine,et al.  Towards large amounts of Janus nanoparticles through a protection-deprotection route. , 2005, Chemical communications.

[14]  Joerg Lahann,et al.  Biphasic Janus particles with nanoscale anisotropy , 2005, Nature materials.

[15]  M. Delville,et al.  Dissymmetrization of micro-particle surface by laser-induced photochemical deposition , 2005 .

[16]  M. Delville,et al.  Top-down approach for the preparation of colloidal carbon nanoparticles , 2004 .

[17]  O. Cayre,et al.  Supraparticles and “Janus” Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique , 2004 .

[18]  G. Whitesides,et al.  Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. , 2003, Journal of the American Chemical Society.

[19]  O. Velev,et al.  Fabrication of asymmetrically coated colloid particles by microcontact printing techniques , 2003 .

[20]  J. Bradley,et al.  Contactless Electrodeposition of Palladium Catalysts. , 1999, Angewandte Chemie.

[21]  H. Kawaguchi,et al.  Preparation of unsymmetrical microspheres at the interfaces , 1999 .

[22]  J. Bradley,et al.  Creating electrical contacts between metal particles using directed electrochemical growth , 1997, Nature.

[23]  H. Takei and,et al.  Gradient Sensitive Microscopic Probes Prepared by Gold Evaporation and Chemisorption on Latex Spheres , 1997 .

[24]  Debra R. Rolison,et al.  Electrochemical behavior of dispersions of spherical ultramicroelectrodes , 1986 .

[25]  A. Bard,et al.  Heterogeneous photocatalytic and photosynthetic deposition of copper on TiO2 and WO3 powders , 1979 .

[26]  A. Bard,et al.  Heterogeneous photocatalytic and photosynthetic deposition of copper on Titanium dioxide and tungsten(VI) oxide powders , 1979 .

[27]  L. Nyholm,et al.  Potential and current density distributions at electrodes intended for bipolar patterning. , 2009, Analytical chemistry.