Exogenic and endogenic albedo and color patterns on Europa

New global and high-resolution multispectral mosaics of Europa have been produced from the Voyager imaging data. Photometric normalizations are based on multiple-image techniques that explicitly account for intrinsic albedo variations through pixel-by-pixel solutions. The exogenic color and albedo pattern on Europa is described by a second-order function of the cosine of the angular distance from the apex of orbital motion. On the basis of this second-order function and of color trends that are different on the leading and trailing hemispheres, the exogenic pattern is interpreted as being due to equilibrium between two dominant processes: (1) impact gardening and (2) magnetospheric interactions, including sulfur-ion implantation and sputtering redistribution. Removal of the model exogenic pattern in the mosaics reveals the endogenic variations, consisting of only two major units: darker (redder) and bright materials. Therefore Europa's visual spectral reflectivity is simple, having one continuous exogenic pattern and two discrete endogenic units.

[1]  A. Bar-Nun,et al.  Europan surface phenomena , 1985 .

[2]  Laurence A. Soderblom,et al.  Modeling crater topography and albedo from monoscopic Viking Orbiter images: 1. Methodology , 1984 .

[3]  R. Clark,et al.  Spectral properties of ice‐particulate mixtures and implications for remote sensing: 1. Intimate mixtures , 1984 .

[4]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[5]  B. Buratti Application of a radiative transfer model to bright icy satellites , 1984 .

[6]  R. Clark,et al.  Frost grain size metamorphism: Implications for remote sensing of planetary surfaces , 1983 .

[7]  L. Soderblom,et al.  Global multispectral mosaics of the icy Galilean satellites , 1983 .

[8]  Bonnie J. Buratti,et al.  Voyager photometry of Europa , 1983 .

[9]  R. S. Wolff,et al.  The Interaction of the Jovian Magnetosphere with the Icy Galilean Satellites. , 1983 .

[10]  E. Sieveka,et al.  Thermal- and plasma-induced molecular redistribution on the icy satellites , 1982 .

[11]  Steven W. Squyres,et al.  Liquid water and active resurfacing on Europa , 1982, Nature.

[12]  D. Mendis,et al.  Charged dust in the outer planetary magnetospheres , 1981 .

[13]  Kari Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. , 1981 .

[14]  Kari Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies , 1981 .

[15]  L. Soderblom,et al.  Radiometric performance of the Voyager cameras , 1981 .

[16]  Louis J. Lanzerotti,et al.  Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft , 1981 .

[17]  John W. Belcher,et al.  Positive ion observations in the middle magnetosphere of Jupiter , 1981 .

[18]  Robert M. Nelson,et al.  Evidence for sulphur implantation in Europa's UV absorption band , 1981, Nature.

[19]  G. Schubert,et al.  Internal structures of the Galilean satellites , 1981 .

[20]  T. Johnson,et al.  Effects of Io ejecta on Europa , 1981 .

[21]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[22]  A. Eviatar,et al.  Ground-based observations of the Io torus during Voyager 1 encounter: Indications of enhanced plasma injection and transport , 1981 .

[23]  D. Pieri,et al.  Is Europa surface cracking due to thermal evolution? , 1981, Nature.

[24]  K. Collerson,et al.  Europa's petrological thermal history , 1981, Nature.

[25]  R. N. Clark,et al.  Ganymede, Europa, Callisto, and Saturn's rings: Compositional analysis from reflectance spectroscopy☆ , 1980 .

[26]  J. Bell,et al.  Visible spectral reflectance measurements (0.33–1.1 μm) of the Galilean satellites at many orbital phase angles , 1980 .

[27]  M. Davies,et al.  Coordinates of features on the Galilean satellites , 1980 .

[28]  T V Johnson,et al.  The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results , 1979, Science.

[29]  P. Cassen,et al.  Is there liquid water on Europa , 1979 .

[30]  Charles F. Yoder,et al.  How tidal heating in Io drives the galilean orbital resonance locks , 1979, Nature.

[31]  L. Soderblom,et al.  The geology of Europa , 1979 .

[32]  D. W. Strecker,et al.  Near-infrared spectra of the Galilean satellites - Observations and compositional implications , 1978 .

[33]  E. Eliason,et al.  Global color variations on the Martian surface , 1978 .

[34]  James L. Elliot,et al.  Scattering of light from particulate surfaces. I - A laboratory assessment of multiple-scattering effects. [planetary simulation , 1978 .

[35]  J. Goguen,et al.  Near-opposition limb darkening of solids of planetary interest , 1978 .

[36]  B. V. Dasarathy,et al.  Classification software technique assessment , 1976 .

[37]  W. R. Weaver,et al.  A photometric function for diffuse reflection by particulate materials , 1975 .

[38]  Dale P. Cruikshank,et al.  The two faces of Iapetus , 1975 .

[39]  D. Morrison,et al.  Four-color photometry of the Galilean satellites , 1974 .

[40]  W. Smythe,et al.  Frost spectra: Comparison with Jupiter's Satellites , 1974 .

[41]  D. Morrison,et al.  Thermal properties of the Galilean satellites , 1973 .

[42]  O. Hansen Ten-micron eclipse observations of Io, Europa, and Ganymede , 1973 .

[43]  U. Fink,et al.  Infrared spectra of the Galilean satellites of Jupiter , 1973 .

[44]  S. Ridgway,et al.  Galilean Satellites: Identification of Water Frost , 1972, Science.

[45]  T. Johnson Galilean satellites - Narrowband photometry 0.30 to 1.10 microns , 1971 .

[46]  T. McCord,et al.  Galilean satellites the spectral reflectivity 0.30–1.10 micron☆ , 1970 .

[47]  J. Burns Jupiter's Decametric Radio Emission and the Radiation Belts of Its Galilean Satellites , 1968, Science.

[48]  William M. Irvine,et al.  The shadowing effect in diffuse reflection , 1966 .

[49]  B. Hapke An Improved Theoretical Lunar Photometric Function. , 1966 .

[50]  B. Hapke A THEORETICAL PHOTOMETRIC FUNCTION FOR THE LUNAR SURFACE , 1963 .

[51]  G. Kuiper Infrared observations of planets and satellites , 1957 .

[52]  M. Minnaert The reciprocity principle in lunar photometry , 1941 .

[53]  J. Stebbins THE LIGHT VARIATIONS OF THE SATELLITES OF JUPITER AND THEIR APPLICATION TO MEASURES OF THE SOLAR CONSTANT , 1926 .

[54]  R. Clark,et al.  Europa: Characterization and interpretation of global spectral surface units , 1986 .

[55]  J. Veverka,et al.  Effects of body shape on disk-integrated spectral reflectance , 1982 .

[56]  E. Shoemaker,et al.  Cratering Time Scales for the Galilean Satellites , 1982 .

[57]  P. Cassen,et al.  Structure and thermal evolution of the Galilean satellites , 1982 .

[58]  Richard J. Greenberg,et al.  Orbital evolution of the Galilean satellites , 1981 .

[59]  J. Goguen A Theoretical and Experimental Investigation of the Photometric Functions of Particulate Surfaces. , 1981 .

[60]  K. Lumme,et al.  Colorimetry and magnitudes of asteroids , 1979 .

[61]  J. B. Plescia,et al.  The geology of Ganymede , 1979 .

[62]  D. Morrison,et al.  Photometry of the Galilean Satellites , 1977 .

[63]  T. Johnson,et al.  Satellite spectrophotometry and surface compositions , 1977 .

[64]  J. Veverka Photometry of satellite surfaces , 1977 .

[65]  J. Burns,et al.  The Jovian satellites , 1976 .

[66]  D. L. Harris,et al.  Photometry and Colorimetry of Planets and Satellites , 1961 .

[67]  J. Stebbins,et al.  Further photometric measures of Jupiter's satellites and Uranus, with tests of the solar constant , 1928 .