Statistical complexity and Fisher–Shannon information in the H-atom

The Fisher–Shannon information and a statistical measure of complexity are calculated in the position and momentum spaces for the wave functions of the H-atom. For each level of energy, it is found that these two indicators take their minimum values on the orbitals that correspond to the highest orbital angular momentum.

[1]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[2]  C. P. Panos,et al.  Comparison of SDL and LMC measures of complexity: Atoms as a testbed , 2007 .

[3]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[4]  Yáñez,et al.  Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[5]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[6]  Ricardo López-Ruiz,et al.  Features of the extension of a statistical measure of complexity to continuous systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Jesús S. Dehesa,et al.  The Fisher information of single-particle systems with a central potential , 2005 .

[8]  I. Beigman,et al.  Physics of Highly Excited Atoms and Ions , 1998 .

[9]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[10]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[11]  A. Messiah Quantum Mechanics , 1961 .

[12]  Sears,et al.  Some novel characteristics of atomic information entropies. , 1985, Physical review. A, General physics.

[13]  L R B Elton Fundamentals of Modern Physics , 1962 .

[14]  K Ch Chatzisavvas,et al.  Information entropy, information distances, and complexity in atoms. , 2005, The Journal of chemical physics.

[15]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[16]  X Calbet,et al.  Tendency towards maximum complexity in a nonequilibrium isolated system. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  P. C. Schmidt,et al.  H. A. Bethe and E. Salpeter: Quantum Mechanics of One‐ and Two‐Electron atoms. Plenum/Rosetta, New York 1977. 370 Seiten, Preis: $ 8.95. , 1978 .

[18]  J. S. Dehesa,et al.  The Fisher-Shannon information plane, an electron correlation tool. , 2004, The Journal of chemical physics.

[19]  Mark W. Coffey,et al.  Semiclassical position entropy for hydrogen-like atoms , 2003 .

[20]  Ricardo López-Ruiz,et al.  Shannon information, LMC complexity and Rényi entropies: a straightforward approach. , 2003, Biophysical chemistry.

[21]  S. Patil,et al.  Characteristic features of net information measures for constrained Coulomb potentials , 2007 .

[22]  H. E. Montgomery,et al.  Statistical complexity and Fisher–Shannon information measure of H+2 , 2008 .

[23]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[24]  Gadre,et al.  Rigorous relationships among quantum-mechanical kinetic energy and atomic information entropies: Upper and lower bounds. , 1987, Physical review. A, General physics.

[25]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.