Psi‐series method for equality of random trees and quadratic convolution recurrences

An unusual and surprising expansion of the form as , is derived for the probability pn that two randomly chosen binary search trees are identical (in shape, hence in labels of all corresponding nodes). A quantity arising in the analysis of phylogenetic trees is also proved to have a similar asymptotic expansion. Our method of proof is new in the literature of discrete probability and the analysis of algorithms, and it is based on the logarithmic psi-series expansions for nonlinear differential equations. Such an approach is very general and applicable to many other problems involving nonlinear differential equations; many examples are discussed in this article and several attractive phenomena are discovered.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 67–108, 2014

[1]  Philippe Flajolet,et al.  On the Analysis of Linear Probing Hashing , 1998, Algorithmica.

[2]  Amadeu Delshams,et al.  PSI-SERIES OF QUADRATIC VECTOR FIELDS ON THE PLANE , 1997 .

[3]  E. L. Ince Ordinary differential equations , 1927 .

[4]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[5]  Conrado Martínez Parra Statistics under the BST model , 1992 .

[6]  Conrado Martínez Average-case Analysis of Equality of Binary Trees Under the BST Probability Model , 1991, FCT.

[7]  P. Flajolet,et al.  Isomorphism and Symmetries in Random Phylogenetic Trees , 2009, Journal of Applied Probability.

[8]  Nicolas Curien,et al.  Partial match queries in two-dimensional quadtrees: a probabilistic approach , 2010, Advances in Applied Probability.

[9]  David B. Saakian,et al.  The calculation of multifractal properties of directed random walks on hierarchic trees with continuous branching , 2012, 1212.1536.

[10]  Gaston H. Gonnet,et al.  Analytic variations on quadtrees , 2005, Algorithmica.

[11]  A. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .

[12]  Noga Alon,et al.  Another Abstraction of the Erdös-Szekeres Happy End Theorem , 2010, Electron. J. Comb..

[13]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[14]  R. Cooper A Class of Recurrence Formulae , 1947 .

[15]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[16]  E. Hille,et al.  8.—On a Class of Series Expansions in the Theory of Emden's Equation , 1973, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[17]  J. Horn Ueber die Reihenentwickelung der Integrale eines Systems von Differentialgleichungen in der Umgebung gewisser singulärer Stellen. , 1895 .

[18]  Friedrich Eisenbrand,et al.  Convexly Independent Subsets of the Minkowski Sum of Planar Point Sets , 2008, Electron. J. Comb..

[19]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[20]  E. M. Wright A quadratic recurrence of Faltung type , 1980 .

[21]  Daniel J. Kleitman,et al.  Proportions of Irreducible Diagrams , 1970 .

[22]  Edward A. Bender,et al.  Asymptotics of Some Convolutional Recurrences , 2010, Electron. J. Comb..

[23]  P. Flajolet,et al.  Patterns in random binary search trees , 1997 .

[24]  Mike A. Steel,et al.  The size of a maximum agreement subtree for random binary trees , 2001, Bioconsensus.

[25]  Helmut Prodinger,et al.  Partial match queries in relaxed multidimensional search trees , 2001, Algorithmica.

[26]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[27]  Edward A. Bender,et al.  The Map Asymptotics Constant tg , 2008, Electron. J. Comb..

[28]  Conrado Martínez,et al.  Randomized K-Dimensional Binary Search Trees , 1998, ISAAC.

[29]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[30]  Hsien-Kuei Hwang,et al.  Partial Match Queries in Random k-d Trees , 2006, SIAM J. Comput..

[31]  橋本 英典,et al.  A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi ; Higher Transcendental Functions, Vols. I, II, III. McGraw-Hill, New York-Toronto-London, 1953, 1953, 1955. xxvi+302, xvii+396, xvii+292頁. 16×23.5cm. $6.50, $7.50, $6.50. , 1955 .

[32]  A. R. Chowdhury,et al.  Painlevé analysis and its applications , 2000 .

[33]  Nicolas Broutin,et al.  Partial match queries in random quadtrees , 2011, SODA.

[34]  Chak-Kuen Wong,et al.  On Binary Search Trees , 1971, IFIP Congress.

[35]  E. Hille,et al.  Ordinary di?erential equations in the complex domain , 1976 .

[36]  Yuri Yakubovich,et al.  Recursive partition structures , 2006 .

[37]  E. Hille,et al.  3.—A Note on Quadratic Systems , 1974, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[38]  Ricardo A. Baeza-Yates,et al.  On the Average Size of the Intersection of Binary Trees , 1992, SIAM J. Comput..

[39]  José-Ramón Sánchez-Couso,et al.  Reductions in binary search trees , 2006, Theor. Comput. Sci..

[40]  Michael F. Barnsley,et al.  General solution of a Boltzmann equation, and the formation of Maxwellian tails , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[41]  L. Rüschendorf,et al.  LIMIT LAWS FOR PARTIAL MATCH QUERIES IN QUADTREES , 2001 .

[42]  José-Ramón Sánchez-Couso,et al.  Binary Search Trees, Recurrent Properties andWave Equations , 2007, Fundam. Informaticae.

[43]  Michael S. Waterman,et al.  On some new sequences generalizing the Catalan and Motzkin numbers , 1979, Discret. Math..