Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation

Density evolution is an algorithm for computing the capacity of low-density parity-check (LDPC) codes under message-passing decoding. For memoryless binary-input continuous-output additive white Gaussian noise (AWGN) channels and sum-product decoders, we use a Gaussian approximation for message densities under density evolution to simplify the analysis of the decoding algorithm. We convert the infinite-dimensional problem of iteratively calculating message densities, which is needed to find the exact threshold, to a one-dimensional problem of updating the means of the Gaussian densities. This simplification not only allows us to calculate the threshold quickly and to understand the behavior of the decoder better, but also makes it easier to design good irregular LDPC codes for AWGN channels. For various regular LDPC codes we have examined, thresholds can be estimated within 0.1 dB of the exact value. For rates between 0.5 and 0.9, codes designed using the Gaussian approximation perform within 0.02 dB of the best performing codes found so far by using density evolution when the maximum variable degree is 10. We show that by using the Gaussian approximation, we can visualize the sum-product decoding algorithm. We also show that the optimization of degree distributions can be understood and done graphically using the visualization.

[1]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[2]  Dariush Divsalar,et al.  Low Complexity Turbo-like Codes , 2000 .

[3]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[4]  Sae-Young Chung,et al.  Gaussian approximation for sum-product decoding of low-density parity-check codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[5]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[6]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[7]  William T. Freeman,et al.  Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.

[8]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[9]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[10]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[11]  Carlos R. P. Hartmann,et al.  An optimum symbol-by-symbol decoding rule for linear codes , 1976, IEEE Trans. Inf. Theory.

[12]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[13]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[14]  Philippe Godlewski,et al.  Replication decoding , 1979, IEEE Trans. Inf. Theory.

[15]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[16]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[17]  G.D. Forney,et al.  Codes on graphs: Normal realizations , 2000, IEEE Trans. Inf. Theory.

[18]  Stephan ten Brink Iterative Decoding Trajectories of Parallel Concatenated Codes , 1999 .

[19]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[20]  Hesham El Gamal,et al.  Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[21]  S. Brink Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .

[22]  B. Frey Turbo Factor Analysis , 1999 .

[23]  Daniel A. Spielman,et al.  Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.

[24]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[25]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[26]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[27]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[28]  Sae-Young Chung,et al.  On the construction of some capacity-approaching coding schemes , 2000 .

[29]  Benjamin Van Roy,et al.  An analysis of belief propagation on the turbo decoding graph with Gaussian densities , 2001, IEEE Trans. Inf. Theory.

[30]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.