Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation
暂无分享,去创建一个
Sae-Young Chung | Rüdiger L. Urbanke | Thomas J. Richardson | T. Richardson | R. Urbanke | Sae-Young Chung
[1] Stephan ten Brink,et al. Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..
[2] Dariush Divsalar,et al. Low Complexity Turbo-like Codes , 2000 .
[3] Daniel A. Spielman,et al. Practical loss-resilient codes , 1997, STOC '97.
[4] Sae-Young Chung,et al. Gaussian approximation for sum-product decoding of low-density parity-check codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[5] A. Glavieux,et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.
[6] I. M. Jacobs,et al. Principles of Communication Engineering , 1965 .
[7] William T. Freeman,et al. Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.
[8] Daniel A. Spielman,et al. Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[9] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[10] Niclas Wiberg,et al. Codes and Decoding on General Graphs , 1996 .
[11] Carlos R. P. Hartmann,et al. An optimum symbol-by-symbol decoding rule for linear codes , 1976, IEEE Trans. Inf. Theory.
[12] Radford M. Neal,et al. Near Shannon limit performance of low density parity check codes , 1996 .
[13] Sae-Young Chung,et al. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.
[14] Philippe Godlewski,et al. Replication decoding , 1979, IEEE Trans. Inf. Theory.
[15] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[16] G. Forney,et al. Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[17] G.D. Forney,et al. Codes on graphs: Normal realizations , 2000, IEEE Trans. Inf. Theory.
[18] Stephan ten Brink. Iterative Decoding Trajectories of Parallel Concatenated Codes , 1999 .
[19] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[20] Hesham El Gamal,et al. Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[21] S. Brink. Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .
[22] B. Frey. Turbo Factor Analysis , 1999 .
[23] Daniel A. Spielman,et al. Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.
[24] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[25] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[26] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[27] H. Jin,et al. Irregular repeat accumulate codes , 2000 .
[28] Sae-Young Chung,et al. On the construction of some capacity-approaching coding schemes , 2000 .
[29] Benjamin Van Roy,et al. An analysis of belief propagation on the turbo decoding graph with Gaussian densities , 2001, IEEE Trans. Inf. Theory.
[30] Joachim Hagenauer,et al. Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.