Maturation-Based Model of Arrhythmogenic Right Ventricular Dysplasia Using Patient-Specific Induced Pluripotent Stem Cells.

Cellular reprogramming of somatic cells to patient-specific induced pluripotent stem cells (iPSCs) enables in-vitro modeling of human cardiac disorders for pathogenic and therapeutic investigations. However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging because of the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia (ARVD) is an inherited cardiomyopathy characterized by pathological fibrofatty infiltration and cardiomyocyte (CM) loss predominantly in the right ventricle (RV), leading to heart failure and lethal arrhythmias. Over 50% of affected individuals have desmosome gene mutations, most commonly inPKP2encoding plakophilin-2. Using Yamanaka's pluripotent factors, we generated iPSC lines from ARVD patients withPKP2mutations. We first developed a method to induce metabolic maturation of iPSC-CMs and showed that induction of adult-like metabolic energetics from an embryonic/glycolytic state is essential to model an adult-onset cardiac disease using patient-specific iPSCs. Furthermore, we showed that coactivation of normal peroxisome proliferator-activated receptor (PPAR)-α and abnormal PPARγ pathways in ARVD iPSC-CMs resulted in exaggerated CM lipogenesis, CM apoptosis, Na(+)channel downregulation and defective intracellular calcium handling, recapitulating the pathological signatures of ARVD. Using this model, we revealed novel pathogenic insights that metabolic derangement in an adult-like metabolic milieu underlies ARVD pathologies, enabling us to propose novel disease-modifying therapeutic strategies.

[1]  Yusu Gu,et al.  Normalization of Naxos plakoglobin levels restores cardiac function in mice. , 2015, The Journal of clinical investigation.

[2]  H. Calkins,et al.  Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy , 2014, Science Translational Medicine.

[3]  George A. Truskey,et al.  Modeling the mitochondrial cardiomyopathy of Barth syndrome with iPSC and heart-on-chip technologies , 2014, Nature Medicine.

[4]  S. Priori,et al.  Missense Mutations in Plakophilin-2 Cause Sodium Current Deficit and Associate With a Brugada Syndrome Phenotype , 2014, Circulation.

[5]  A. Marian,et al.  The Hippo Pathway Is Activated and Is a Causal Mechanism for Adipogenesis in Arrhythmogenic Cardiomyopathy , 2014, Circulation research.

[6]  Mark D. Huffman,et al.  Heart disease and stroke statistics--2014 update: a report from the American Heart Association. , 2014, Circulation.

[7]  G. Thiene,et al.  Is it time for plakoglobin immune-histochemical diagnostic test for arrhythmogenic cardiomyopathy in the routine pathology practice? , 2013, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[8]  Karl-Ludwig Laugwitz,et al.  Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Versatile Tool for Arrhythmia Research , 2013, Circulation research.

[9]  B. Knollmann,et al.  Induced Pluripotent Stem Cell–Derived Cardiomyocytes: Boutique Science or Valuable Arrhythmia Model? , 2013, Circulation research.

[10]  R. Hauer,et al.  Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. , 2013, Heart rhythm.

[11]  Erik Willems,et al.  Induced Pluripotent Stem Cells in Cardiovascular Drug Discovery , 2013, Circulation research.

[12]  Euan A Ashley,et al.  Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. , 2013, Cell stem cell.

[13]  H. Calkins,et al.  Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs , 2012, Nature.

[14]  Rui Chen,et al.  Patient-Specific Induced Pluripotent Stem Cells as a Model for Familial Dilated Cardiomyopathy , 2012, Science Translational Medicine.

[15]  D. Corrado,et al.  Pathophysiology of arrhythmogenic cardiomyopathy , 2012, Nature Reviews Cardiology.

[16]  Laura Iop,et al.  Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia , 2012, EMBO molecular medicine.

[17]  E. Gao,et al.  Loss of Cadherin-Binding Proteins β-Catenin and Plakoglobin in the Heart Leads to Gap Junction Remodeling and Arrhythmogenesis , 2012, Molecular and Cellular Biology.

[18]  Peng-Sheng Chen,et al.  Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. , 2011, Human molecular genetics.

[19]  G. Dorn,et al.  Fatty Acid Synthase Modulates Homeostatic Responses to Myocardial Stress* , 2011, The Journal of Biological Chemistry.

[20]  Lior Gepstein,et al.  Modelling the long QT syndrome with induced pluripotent stem cells , 2011, Nature.

[21]  R. Dolmetsch,et al.  Using iPS cells to investigate cardiac phenotypes in patients with Timothy Syndrome , 2011, Nature.

[22]  K. Morikawa,et al.  The nuclear receptor PPARγ individually responds to serotonin‐ and fatty acid‐metabolites , 2010, The EMBO journal.

[23]  M. Seyfarth,et al.  Patient-specific induced pluripotent stem-cell models for long-QT syndrome. , 2010, The New England journal of medicine.

[24]  Wojciech Zareba,et al.  Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Proposed Modification of the Task Force Criteria , 2010, European heart journal.

[25]  Lei Yang,et al.  Patient-specific induced pluripotent stem cell derived models of LEOPARD syndrome , 2010, Nature.

[26]  M. Mercola,et al.  Electrophysiological challenges of cell-based myocardial repair. , 2009, Circulation.

[27]  Stephanie L. K. Bowers,et al.  Cardiac Fibroblast: The Renaissance Cell , 2009, Circulation research.

[28]  S. Russell,et al.  Comprehensive Desmosome Mutation Analysis in North Americans With Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy , 2009, Circulation. Cardiovascular genetics.

[29]  Y. Lecarpentier,et al.  A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. , 2009, Cardiovascular research.

[30]  John Turk,et al.  Identification of a Physiologically Relevant Endogenous Ligand for PPARα in Liver , 2009, Cell.

[31]  R. Schwartz,et al.  Genetic Fate Mapping Identifies Second Heart Field Progenitor Cells As a Source of Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy , 2009, Circulation research.

[32]  Hugh Calkins,et al.  A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. , 2008, The New England journal of medicine.

[33]  H. Calkins,et al.  Arrhythmogenic right ventricular cardiomyopathy/dysplasia: An update , 2008, Current cardiology reports.

[34]  George Q. Daley,et al.  Disease-Specific Induced Pluripotent Stem Cells , 2008, Cell.

[35]  H. Calkins,et al.  Mechanisms of Disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy , 2008, Nature Clinical Practice Cardiovascular Medicine.

[36]  B. Walker,et al.  Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. , 2008, The Journal of endocrinology.

[37]  David A Ferrick,et al.  Advances in measuring cellular bioenergetics using extracellular flux. , 2008, Drug discovery today.

[38]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[39]  D. Brasaemle Thematic review series: Adipocyte Biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis Published, JLR Papers in Press, September 18, 2007. , 2007, Journal of Lipid Research.

[40]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[41]  Stefanie Dimmeler,et al.  Cell-Based Therapy of Myocardial Infarction , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[42]  S. Homma,et al.  Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice , 2007 .

[43]  Stefan Neubauer,et al.  The failing heart--an engine out of fuel. , 2007, The New England journal of medicine.

[44]  H. Calkins,et al.  Recessive arrhythmogenic right ventricular dysplasia due to novel cryptic splice mutation in PKP2 , 2006, Human mutation.

[45]  P. Oettgen,et al.  Controversies in Cardiovascular Medicine: Ready for the Next Step , 2006 .

[46]  Michael D. Schneider,et al.  Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. , 2006, The Journal of clinical investigation.

[47]  A. Onay-Beşikci Regulation of Cardiac Energy Metabolism in Newborn , 2006, Molecular and Cellular Biochemistry.

[48]  Lil Pabon,et al.  Regeneration gaps: observations on stem cells and cardiac repair. , 2006, Journal of the American College of Cardiology.

[49]  S. Russell,et al.  Clinical Features of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Associated With Mutations in Plakophilin-2 , 2006, Circulation.

[50]  J. Towbin,et al.  The failing heart , 2002, Nature.

[51]  H. Sul,et al.  Understanding adipocyte differentiation. , 1998, Physiological reviews.

[52]  G. Fontaine,et al.  [Right ventricular dysplasia]. , 1992, Annales de cardiologie et d'angeiologie.

[53]  R Frank,et al.  Right Ventricular Dysplasia: A Report of 24 Adult Cases , 1982, Circulation.

[54]  N. Terada,et al.  A practical guide to induced pluripotent stem cell research using patient samples , 2015, Laboratory Investigation.

[55]  C. Folmes,et al.  Myocardial fatty acid metabolism in health and disease. , 2010, Physiological reviews.

[56]  D. Corrado,et al.  Orphanet Journal of Rare Arrhythmogenic Right Ventricular Cardiomyopathy/dysplasia Diseases Name and Synonyms , 2007 .

[57]  Millard H. Lambert,et al.  PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ∞ AND METABOLIC DISEASE , 2001 .