Dilated residual encode–decode networks for image denoising

Abstract. Owing to recent advancements, very deep convolutional neural networks (CNNs) have found application in image denoising. However, while deeper models lead to better restoration performance, they are marred by a high number of parameters and increased training difficulty. To address these issues, we propose a CNN-based framework, named dilated residual encode–decode networks (DRED-Net), for image denoising, which learns direct end-to-end mappings from corrupted images to obtain clean images using few parameters. Our proposed network consists of multiple layers of convolution and deconvolution operators; in addition, we use dilated convolutions to boost the performance of our network without increasing the depth of the model or its complexity. Extensive experiments on synthetic noisy images are conducted to evaluate DRED-Net, and the results are compared with those obtained using state-of-the-art denoising methods. Our experimental results show that DRED-Net leads to results comparable with those obtained using other state-of-the-art methods for image denoising tasks.

[1]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[2]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[4]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Mingxuan Sun,et al.  Dilated Deep Residual Network for Image Denoising , 2017, 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI).

[6]  Yunjin Chen,et al.  Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Wangmeng Zuo,et al.  Learning Deep CNN Denoiser Prior for Image Restoration , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[9]  Yu-Bin Yang,et al.  Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections , 2016, NIPS.

[10]  Lei Zhang,et al.  Weighted Nuclear Norm Minimization with Application to Image Denoising , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Kyoung Mu Lee,et al.  Accurate Image Super-Resolution Using Very Deep Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[13]  Anat Levin,et al.  Natural image denoising: Optimality and inherent bounds , 2011, CVPR 2011.

[14]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[15]  한보형,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015 .

[16]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.