Infimal Convolution of Data Discrepancies for Mixed Noise Removal
暂无分享,去创建一个
Carola-Bibiane Schönlieb | Luca Calatroni | Juan Carlos de los Reyes | C. Schönlieb | L. Calatroni | J. C. Reyes
[1] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[2] C. Schönlieb,et al. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization , 2013 .
[3] Martin Burger,et al. ERROR ESTIMATES FOR GENERAL FIDELITIES , 2011 .
[4] Wotao Yin,et al. An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..
[5] Fionn Murtagh,et al. Image restoration with noise suppression using a wavelet transform and a multiresolution support constraint , 1994, Optics & Photonics.
[6] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[7] M. Nikolova. An Algorithm for Total Variation Minimization and Applications , 2004 .
[8] R. Anderssen,et al. Joint additive Kullback–Leibler residual minimization and regularization for linear inverse problems , 2007 .
[9] Carola-Bibiane Schönlieb,et al. Bilevel approaches for learning of variational imaging models , 2015, ArXiv.
[10] Mila Nikolova,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.
[11] R. Rockafellar,et al. Integral functionals, normal integrands and measurable selections , 1976 .
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[14] Hugues Talbot,et al. A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[15] Interchange of infimum and integral , 2003 .
[16] Paul A. Rodríguez,et al. Total Variation Regularization Algorithms for Images Corrupted with Different Noise Models: A Review , 2013, J. Electr. Comput. Eng..
[17] W. J. Fitzgerald,et al. Analytical approach to changepoint detection in Laplacian noise , 1995 .
[18] Samuli Siltanen,et al. Photographic dataset: playing cards , 2017, ArXiv.
[19] A. Nehorai,et al. Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.
[20] Thomas J. Asaki,et al. A Variational Approach to Reconstructing Images Corrupted by Poisson Noise , 2007, Journal of Mathematical Imaging and Vision.
[21] Carola-Bibiane Schönlieb,et al. Infimal Convolution Regularisation Functionals of BV and Lp Spaces. The Case p=∞ , 2015, System Modelling and Optimization.
[22] G. Buttazzo,et al. Relaxation results for some free discontinuity problems. , 1995 .
[23] Alessandro Foi,et al. Clipped noisy images: Heteroskedastic modeling and practical denoising , 2009, Signal Process..
[24] Yann Gousseau,et al. The TVL1 Model: A Geometric Point of View , 2009, Multiscale Model. Simul..
[25] Jian-Feng Cai,et al. Two-phase approach for deblurring images corrupted by impulse plus gaussian noise , 2008 .
[26] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[27] Carola-Bibiane Schönlieb,et al. The structure of optimal parameters for image restoration problems , 2015, ArXiv.
[28] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[29] Anna Maria Jezierska,et al. Restauration d'images dégradées par un bruit Poisson-Gauss. (Image restoration in the presence of Poisson-Gaussian noise) , 2013 .
[30] R. White,et al. Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.
[31] Karl Kunisch,et al. On Infimal Convolution of TV-Type Functionals and Applications to Video and Image Reconstruction , 2014, SIAM J. Imaging Sci..
[32] Kristian Bredies,et al. Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..
[33] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[34] Thierry Blu,et al. Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.
[35] Leon Hirsch,et al. Fundamentals Of Convex Analysis , 2016 .
[36] Jonathan M. Borwein,et al. Convergence of Best Entropy Estimates , 1991, SIAM J. Optim..
[37] Umberto Amato,et al. Maximum entropy regularization of Fredholm integral equations of the first kind , 1991 .
[38] A. Langer. Automated parameter selection in the -TV model for removing Gaussian plus impulse noise , 2017 .
[39] Martin Burger,et al. Infimal convolution regularisation functionals of BV and $\mathrm{L}^{p}$ spaces. Part I: The finite $p$ case , 2015, 1504.01956.
[40] Jahn Müller,et al. Total Variation Processing of Images with Poisson Statistics , 2009, CAIP.
[41] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[42] Yves Meyer,et al. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .
[43] Michael Hintermüller,et al. Subspace Correction Methods for a Class of Nonsmooth and Nonadditive Convex Variational Problems with Mixed L1/L2 Data-Fidelity in Image Processing , 2013, SIAM J. Imaging Sci..
[44] Juan Carlos De Los Reyes,et al. Numerical PDE-Constrained Optimization , 2015 .
[45] Ming Yan,et al. Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting , 2013, SIAM J. Imaging Sci..
[46] R. Marks,et al. Detection in Laplace Noise , 1978, IEEE Transactions on Aerospace and Electronic Systems.
[47] Guy Bouchitté,et al. New lower semicontinuity results for nonconvex functionals defined on measures , 1990 .
[48] Carola-Bibiane Schönlieb,et al. A Combined First and Second Order Variational Approach for Image Reconstruction , 2012, Journal of Mathematical Imaging and Vision.
[49] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[50] Antonin Chambolle,et al. An introduction to continuous optimization for imaging , 2016, Acta Numerica.
[51] Carola-Bibiane Schönlieb,et al. Dynamic Sampling Schemes for Optimal Noise Learning Under Multiple Nonsmooth Constraints , 2013, System Modelling and Optimization.
[52] Juan Carlos de los Reyes. Optimization of mixed variational inequalities arising in flow of viscoplastic materials , 2012, Comput. Optim. Appl..
[53] M. Bertero,et al. The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise , 2008 .
[54] A. Langer. Automated parameter selection in the L 1 ‐ L 2 -TV model for removing Gaussian plus impulse noise , 2017 .
[55] M. Burger,et al. Total Variation Regularisation in Measurement and Image space for PET reconstruction , 2014, 1403.1272.
[56] Karl Kunisch,et al. A Bilevel Optimization Approach for Parameter Learning in Variational Models , 2013, SIAM J. Imaging Sci..
[57] L. Vese. A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .
[58] Relaxation for a class of nonconvex functionals defined on measures , 1993 .
[59] Hugues Talbot,et al. A Convex Approach for Image Restoration with Exact Poisson-Gaussian Likelihood , 2015, SIAM J. Imaging Sci..