Infimal Convolution of Data Discrepancies for Mixed Noise Removal

We consider the problem of image denoising in the presence of noise whose statistical properties are a combination of two different distributions. We focus on noise distributions frequently conside...

[1]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[2]  C. Schönlieb,et al.  Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization , 2013 .

[3]  Martin Burger,et al.  ERROR ESTIMATES FOR GENERAL FIDELITIES , 2011 .

[4]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[5]  Fionn Murtagh,et al.  Image restoration with noise suppression using a wavelet transform and a multiresolution support constraint , 1994, Optics & Photonics.

[6]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[7]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[8]  R. Anderssen,et al.  Joint additive Kullback–Leibler residual minimization and regularization for linear inverse problems , 2007 .

[9]  Carola-Bibiane Schönlieb,et al.  Bilevel approaches for learning of variational imaging models , 2015, ArXiv.

[10]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[11]  R. Rockafellar,et al.  Integral functionals, normal integrands and measurable selections , 1976 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[14]  Hugues Talbot,et al.  A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Interchange of infimum and integral , 2003 .

[16]  Paul A. Rodríguez,et al.  Total Variation Regularization Algorithms for Images Corrupted with Different Noise Models: A Review , 2013, J. Electr. Comput. Eng..

[17]  W. J. Fitzgerald,et al.  Analytical approach to changepoint detection in Laplacian noise , 1995 .

[18]  Samuli Siltanen,et al.  Photographic dataset: playing cards , 2017, ArXiv.

[19]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[20]  Thomas J. Asaki,et al.  A Variational Approach to Reconstructing Images Corrupted by Poisson Noise , 2007, Journal of Mathematical Imaging and Vision.

[21]  Carola-Bibiane Schönlieb,et al.  Infimal Convolution Regularisation Functionals of BV and Lp Spaces. The Case p=∞ , 2015, System Modelling and Optimization.

[22]  G. Buttazzo,et al.  Relaxation results for some free discontinuity problems. , 1995 .

[23]  Alessandro Foi,et al.  Clipped noisy images: Heteroskedastic modeling and practical denoising , 2009, Signal Process..

[24]  Yann Gousseau,et al.  The TVL1 Model: A Geometric Point of View , 2009, Multiscale Model. Simul..

[25]  Jian-Feng Cai,et al.  Two-phase approach for deblurring images corrupted by impulse plus gaussian noise , 2008 .

[26]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[27]  Carola-Bibiane Schönlieb,et al.  The structure of optimal parameters for image restoration problems , 2015, ArXiv.

[28]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[29]  Anna Maria Jezierska,et al.  Restauration d'images dégradées par un bruit Poisson-Gauss. (Image restoration in the presence of Poisson-Gaussian noise) , 2013 .

[30]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[31]  Karl Kunisch,et al.  On Infimal Convolution of TV-Type Functionals and Applications to Video and Image Reconstruction , 2014, SIAM J. Imaging Sci..

[32]  Kristian Bredies,et al.  Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..

[33]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[34]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[35]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[36]  Jonathan M. Borwein,et al.  Convergence of Best Entropy Estimates , 1991, SIAM J. Optim..

[37]  Umberto Amato,et al.  Maximum entropy regularization of Fredholm integral equations of the first kind , 1991 .

[38]  A. Langer Automated parameter selection in the -TV model for removing Gaussian plus impulse noise , 2017 .

[39]  Martin Burger,et al.  Infimal convolution regularisation functionals of BV and $\mathrm{L}^{p}$ spaces. Part I: The finite $p$ case , 2015, 1504.01956.

[40]  Jahn Müller,et al.  Total Variation Processing of Images with Poisson Statistics , 2009, CAIP.

[41]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[42]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[43]  Michael Hintermüller,et al.  Subspace Correction Methods for a Class of Nonsmooth and Nonadditive Convex Variational Problems with Mixed L1/L2 Data-Fidelity in Image Processing , 2013, SIAM J. Imaging Sci..

[44]  Juan Carlos De Los Reyes,et al.  Numerical PDE-Constrained Optimization , 2015 .

[45]  Ming Yan,et al.  Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting , 2013, SIAM J. Imaging Sci..

[46]  R. Marks,et al.  Detection in Laplace Noise , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[47]  Guy Bouchitté,et al.  New lower semicontinuity results for nonconvex functionals defined on measures , 1990 .

[48]  Carola-Bibiane Schönlieb,et al.  A Combined First and Second Order Variational Approach for Image Reconstruction , 2012, Journal of Mathematical Imaging and Vision.

[49]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[50]  Antonin Chambolle,et al.  An introduction to continuous optimization for imaging , 2016, Acta Numerica.

[51]  Carola-Bibiane Schönlieb,et al.  Dynamic Sampling Schemes for Optimal Noise Learning Under Multiple Nonsmooth Constraints , 2013, System Modelling and Optimization.

[52]  Juan Carlos de los Reyes Optimization of mixed variational inequalities arising in flow of viscoplastic materials , 2012, Comput. Optim. Appl..

[53]  M. Bertero,et al.  The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise , 2008 .

[54]  A. Langer Automated parameter selection in the L 1 ‐ L 2 -TV model for removing Gaussian plus impulse noise , 2017 .

[55]  M. Burger,et al.  Total Variation Regularisation in Measurement and Image space for PET reconstruction , 2014, 1403.1272.

[56]  Karl Kunisch,et al.  A Bilevel Optimization Approach for Parameter Learning in Variational Models , 2013, SIAM J. Imaging Sci..

[57]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[58]  Relaxation for a class of nonconvex functionals defined on measures , 1993 .

[59]  Hugues Talbot,et al.  A Convex Approach for Image Restoration with Exact Poisson-Gaussian Likelihood , 2015, SIAM J. Imaging Sci..