pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper

[1]  J. Nørskov,et al.  Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products , 2018, ACS Catalysis.

[2]  Zachary W. Ulissi,et al.  Theoretical Investigations of Transition Metal Surface Energies under Lattice Strain and CO Environment , 2018 .

[3]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[4]  Feng Jiao,et al.  General Techno-Economic Analysis of CO2 Electrolysis Systems , 2018 .

[5]  Haotian Wang,et al.  Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction , 2018, Nature Catalysis.

[6]  Alexis T. Bell,et al.  Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products , 2018 .

[7]  Xiang Li,et al.  Spectroscopic Observation of Reversible Surface Reconstruction of Copper Electrodes under CO2 Reduction , 2017 .

[8]  Jens K Nørskov,et al.  Understanding trends in electrochemical carbon dioxide reduction rates , 2017, Nature Communications.

[9]  Colin F. Dickens,et al.  Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO2(110) , 2017 .

[10]  J. Greeley,et al.  Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion , 2017, Nature Energy.

[11]  M. Koper,et al.  Competition between Hydrogen Evolution and Carbon Dioxide Reduction on Copper Electrodes in Mildly Acidic Media , 2017, Langmuir : the ACS journal of surfaces and colloids.

[12]  F. Calle‐Vallejo,et al.  Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. , 2017, Angewandte Chemie.

[13]  W. Goddard,et al.  Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K , 2017, Proceedings of the National Academy of Sciences.

[14]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[15]  Byoungsu Kim,et al.  A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2. , 2016, ChemSusChem.

[16]  J. Nørskov,et al.  Barriers of Electrochemical CO2 Reduction on Transition Metals , 2016 .

[17]  Christopher H. Hendon,et al.  Tracking a Common Surface-Bound Intermediate during CO2-to-Fuels Catalysis , 2016, ACS central science.

[18]  Matthew R. Shaner,et al.  A comparative technoeconomic analysis of renewable hydrogen production using solar energy , 2016 .

[19]  Qiang Sun,et al.  Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons , 2016 .

[20]  S. Qiao,et al.  Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide , 2016, Advanced materials.

[21]  J. Nørskov,et al.  Potential Dependence of Electrochemical Barriers from ab Initio Calculations. , 2016, The journal of physical chemistry letters.

[22]  M. Head‐Gordon,et al.  Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. , 2016, The journal of physical chemistry letters.

[23]  A. Nilsson,et al.  Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity , 2016 .

[24]  F. Calle‐Vallejo,et al.  Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction , 2016 .

[25]  Andrew J. Medford,et al.  Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C(2+) Oxygenate Production. , 2016, Journal of the American Chemical Society.

[26]  M. Koper,et al.  In Situ Spectroscopic Study of CO2 Electroreduction at Copper Electrodes in Acetonitrile , 2016 .

[27]  Sonja A. Francis,et al.  Nickel–Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials , 2016 .

[28]  A. Asthagiri,et al.  Theoretical insight on reactivity trends in CO2 electroreduction across transition metals , 2016 .

[29]  Michael J. Janik,et al.  Facet Dependence of CO2 Reduction Paths on Cu Electrodes , 2016 .

[30]  Ravishankar Sundararaman,et al.  Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). , 2016, Journal of the American Chemical Society.

[31]  Ib Chorkendorff,et al.  Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide‐Derived Copper , 2015, Angewandte Chemie.

[32]  Nathan S. Lewis,et al.  Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO2 , 2015 .

[33]  W. Goddard,et al.  Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0. , 2015, The journal of physical chemistry letters.

[34]  Tejs Vegge,et al.  Identifying systematic DFT errors in catalytic reactions , 2015 .

[35]  Matthew W. Kanan,et al.  Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. , 2015, Journal of the American Chemical Society.

[36]  Jens K Nørskov,et al.  Electrochemical Barriers Made Simple. , 2015, The journal of physical chemistry letters.

[37]  Joseph H. Montoya,et al.  Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. , 2015, The journal of physical chemistry letters.

[38]  Andrew B. Bocarsly,et al.  Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy , 2015 .

[39]  Thomas Bligaard,et al.  CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends , 2015, Catalysis Letters.

[40]  J. Nørskov,et al.  Fundamental Concepts in Heterogeneous Catalysis , 2014 .

[41]  Thomas F. Jaramillo,et al.  Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. , 2014, Journal of the American Chemical Society.

[42]  Thomas Bligaard,et al.  Assessing the reliability of calculated catalytic ammonia synthesis rates , 2014, Science.

[43]  Michael J. Janik,et al.  Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory , 2014 .

[44]  J. Nørskov,et al.  Unifying Kinetic and Thermodynamic Analysis of 2 e– and 4 e– Reduction of Oxygen on Metal Surfaces , 2014 .

[45]  Andrew J. Medford,et al.  On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces , 2013 .

[46]  Michel Dupuis,et al.  Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. , 2013, Chemical reviews.

[47]  P. Strasser,et al.  Controlling Catalytic Selectivities during CO2 Electroreduction on Thin Cu Metal Overlayers , 2013 .

[48]  F. Calle‐Vallejo,et al.  Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. , 2013, Angewandte Chemie.

[49]  Nemanja Danilovic,et al.  Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. , 2013, Nature chemistry.

[50]  A. Asthagiri,et al.  Selectivity of CO(2) reduction on copper electrodes: the role of the kinetics of elementary steps. , 2013, Angewandte Chemie.

[51]  Kristian Sommer Thygesen,et al.  Avoiding pitfalls in the modeling of electrochemical interfaces , 2013 .

[52]  Joel B. Varley,et al.  CO and CO2 Hydrogenation to Methanol Calculated Using the BEEF-vdW Functional , 2013, Catalysis Letters.

[53]  David T. Limmer,et al.  Solvation at Aqueous Metal Electrodes , 2012, 1209.1669.

[54]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[55]  M. Koper,et al.  Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. , 2012, Journal of the American Chemical Society.

[56]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[57]  Egill Skúlason,et al.  Standard hydrogen electrode and potential of zero charge in density functional calculations , 2011 .

[58]  M. Koper,et al.  Electrochemical reduction of carbon dioxide on copper electrodes , 2017 .

[59]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  Egill Skúlason,et al.  Modeling the electrified solid-liquid interface , 2008 .

[61]  F. Abild‐Pedersen,et al.  CO adsorption energies on metals with correction for high coordination adsorption sites – A density functional study , 2007 .

[62]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[63]  A. Rappe,et al.  First-principles extrapolation method for accurate CO adsorption energies on metal surfaces , 2003, cond-mat/0310688.

[64]  Y. Hori,et al.  Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes , 2003 .

[65]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[66]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[67]  J. Nørskov,et al.  Role of Steps in N 2 Activation on Ru(0001) , 1999 .

[68]  A. Rappe,et al.  Structure and vibrations of the vicinal copper (211) surface , 1997, cond-mat/9712071.

[69]  F. Mota,et al.  Structure of the First Solvation Shell of the Hydroxide Anion. A Model Study Using OH-(H2O)n (n = 4, 5, 6, 7, 11, 17) Clusters , 1997 .

[70]  Akira Murata,et al.  Electrochemical Reduction of CO at a Copper Electrode , 1997 .

[71]  G. Ertl,et al.  Identification of the "Active Sites" of a Surface-Catalyzed Reaction , 1996, Science.

[72]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[73]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[74]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .