Polynomial $\chi$-binding functions for $t$-broom-free graphs

For any positive integer t, a t-broom is a graph obtained from K1,t+1 by subdividing an edge once. In this paper, we show that, for graphs G without induced t-brooms, we have χ(G) = o(ω(G)), where χ(G) and ω(G) are the chromatic number and clique number of G, respectively. When t = 2, this answers a question of Schiermeyer and Randerath. Moreover, for t = 2, we strengthen the bound on χ(G) to 7.5ω(G), confirming a conjecture of Sivaraman. For t ≥ 3 and {t-broom,Kt,t}-free graphs, we improve the bound to o(ω t−1+ 2 t+1 ).

[1]  Maria Chudnovsky,et al.  Induced subgraphs of graphs with large chromatic number. XII. Distant stars , 2017, J. Graph Theory.

[2]  Hal A. Kierstead,et al.  Radius Three Trees in Graphs with Large Chromatic Number , 2004, SIAM J. Discret. Math..

[3]  T. Karthick,et al.  Coloring graph classes with no induced fork via perfect divisibility , 2021, Electron. J. Comb..

[4]  Louis Esperet,et al.  Graph colorings, flows and perfect matchings , 2017 .

[5]  Paul D. Seymour,et al.  The structure of claw-free graphs , 2005, BCC.

[6]  D. R. Lick,et al.  The Theory and Applications of Graphs. , 1983 .

[7]  Gerhard J. Woeginger,et al.  Graph colorings , 2005, Theor. Comput. Sci..

[8]  Alex D. Scott,et al.  Induced trees in graphs of large chromatic number , 1997, J. Graph Theory.

[9]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[10]  T. Bohman The triangle-free process , 2008, 0806.4375.

[11]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[12]  Shenwei Huang,et al.  Square-Free Graphs with no Induced Fork , 2021, Electron. J. Comb..

[13]  Dinoj Surendran,et al.  The three colour problem , 1999 .

[14]  Ingo Schiermeyer,et al.  Polynomial $$\chi $$χ-Binding Functions and Forbidden Induced Subgraphs: A Survey , 2019, Graphs Comb..

[15]  Peter Keevash,et al.  The early evolution of the H-free process , 2009, 0908.0429.

[16]  Endre Szemerédi,et al.  Induced subtrees in graphs of large chromatic number , 1980, Discret. Math..

[17]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[18]  A. Leaf GRAPH THEORY AND PROBABILITY , 1957 .

[19]  Hal A. Kierstead,et al.  Radius two trees specify χ-bounded classes , 1994, J. Graph Theory.

[20]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[21]  Alex Scott,et al.  Induced subgraphs of graphs with large chromatic number. XIII. New brooms , 2018, Eur. J. Comb..

[22]  A. M. Murray The strong perfect graph theorem , 2019, 100 Years of Math Milestones.