A hybridized discontinuous Galerkin method on mapped deforming domains
暂无分享,去创建一个
[1] Krzysztof J. Fidkowski,et al. Error Estimation and Adaptation in Hybridized Discontinuous Galerkin Methods , 2014 .
[2] Krzysztof J. Fidkowski,et al. Output-based space-time mesh adaptation for the compressible Navier-Stokes equations , 2011, J. Comput. Phys..
[3] Krzysztof J. Fidkowski,et al. An Output-Based Dynamic Order Refinement Strategy for Unsteady Aerodynamics , 2012 .
[4] R. Hartmann,et al. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .
[5] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[6] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[7] Bernardo Cockburn,et al. Hybridizable Discontinuous Galerkin Methods , 2011 .
[8] Endre Süli,et al. DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS , 2004 .
[9] Bernardo Cockburn,et al. An Embedded Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations , 2011 .
[10] Krzysztof J. Fidkowski,et al. Output-based mesh adaptation for high order Navier-Stokes simulations on deformable domains , 2013, J. Comput. Phys..
[11] Michael Woopen,et al. A Comparison of Hybridized and Standard DG Methods for Target-Based hp-Adaptive Simulation of Compressible Flow , 2013, ArXiv.
[12] Frédéric Alauzet,et al. Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows , 2012, J. Comput. Phys..
[13] Krzysztof J. Fidkowski,et al. A local sampling approach to anisotropic metric-based mesh optimization , 2016 .
[14] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[15] Jaime Peraire,et al. Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable Domains , 2007 .
[16] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[17] Michael J. Aftosmis,et al. Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes , 2007 .
[18] Anthony T. Patera,et al. "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..
[19] Bernardo Cockburn,et al. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..
[20] Dimitri J. Mavriplis,et al. Discrete Adjoint Based Adaptive Error Control in Unsteady Flow Problems , 2012 .
[21] Sander Rhebergen,et al. A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains , 2012, J. Comput. Phys..
[22] Dimitri J. Mavriplis,et al. Error estimation and adaptation for functional outputs in time-dependent flow problems , 2009, Journal of Computational Physics.
[23] Bernardo Cockburn,et al. An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.
[24] Prabhu Ramachandran,et al. Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..
[25] J. Oden,et al. hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .
[26] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[27] Dimitri J. Mavriplis,et al. Error estimation and adaptation for functional outputs in time-dependent flow problems , 2009, J. Comput. Phys..
[28] Haihang You,et al. Adaptive Discontinuous Galerkin Finite Element Methods , 2009 .
[29] James Lu,et al. An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .
[30] D. Darmofal,et al. Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .
[31] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[32] Sander Rhebergen,et al. Space-Time Hybridizable Discontinuous Galerkin Method for the Advection–Diffusion Equation on Moving and Deforming Meshes , 2013 .
[33] S. Rebay,et al. GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .
[34] Boris Vexler,et al. Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..
[35] Rolf Rannacher,et al. Goal‐oriented space–time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow , 2012 .
[36] S. Rebay,et al. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .
[37] Bo Dong,et al. A Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems , 2009, SIAM J. Sci. Comput..
[38] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[39] Timothy J. Barth,et al. Space-Time Error Representation and Estimation in Navier-Stokes Calculations , 2013 .
[40] David L. Darmofal,et al. p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .