Ultraviolet-induced fluorescence for plant monitoring: present state and prospects

[FR] Fluorescence induite par le rayonnement ultraviolet pour le suivi de la vegetation : etat actuel et perspectives. L'excitation de feuilles vertes dans l'ultraviolet induit deux types de fluorescence distinctes, fondamentalement differentes, mais complementaires : la fluorescence bleu-verte dans la region 400-630 nm et la fluorescence chlorophyllienne dans la partie rouge-infra-rouge du spectre. Les intensites relatives de ces deux types de fluorescence sont tres sensibles aux proprietes intrinseques des feuilles et aux facteurs de l'environnement. Par consequent, les spectres d'emission de fluorescence induite par le rayonnement ultraviolet peuvent etre consideres comme des signatures complexes qui renseignent sur l'etat physiologique de la plante. La fluorescence des feuille induite par l'UV nous informe sur la photosynthese, les reactions primaires photochimiques et la teneur en chlorophylle, et aussi sur l'accumulation des produits du metabolisme secondaire ainsi que sur l'etat redox de la cellule. Dans cet article, nous nous sommes particulierement interesses a l'application de ces signaux a la teledetection active de la vegetation, le « fluorosensing ».

[1]  H. H. Kim,et al.  New algae mapping technique by the use of an airborne laser fluorosensor. , 1973, Applied optics.

[2]  D. R. Buxton,et al.  Cell‐Wall Composition of Maize Internodes of Varying Maturity , 1998 .

[3]  Hartmut K. Lichtenthaler,et al.  Investigations of the Blue-green Fluorescence Emission of Plant Leaves , 1992 .

[4]  Moon S. Kim,et al.  Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements , 1994 .

[5]  Range-resolved Image Detection of Laser-induced Fluorescence of Natural Trees for Vegetation Distribution Monitoring , 1997 .

[6]  H. A. Stafford Anthocyanins and betalains: evolution of the mutually exclusive pathways , 1994 .

[7]  Francine Heisel,et al.  Blue, Green and Red Fluorescence Signatures and Images of Tobacco Leaves* , 1994 .

[8]  Hartmut K. Lichtenthaler,et al.  Differences in Fluorescence Excitation Spectra of Leaves between Stressed and Non-Stressed Plants , 1996 .

[9]  E. Govindje,et al.  Sixty-Three Years Since Kautsky: Chlorophyll a Fluorescence , 1995 .

[10]  Elizabeth M. Middleton,et al.  Fluorescence imaging and chlorophyll fluorescence to evaluate the role of EDU in UV-B protection in cucumber , 1997, Defense, Security, and Sensing.

[11]  W. Koch,et al.  Elicitor-induced cell death and phytoalexin synthesis in Daucus carota L. , 1998, Planta.

[12]  Elizabeth M. Middleton,et al.  Initial Assessment of Physiological Response to UV-B Irradiation Using Fluorescence Measurements , 1996 .

[13]  T. Horiguchi,et al.  Responses of secondary metabolism in plants to nutrient deficiency , 1997 .

[14]  Hartmut K. Lichtenthaler,et al.  Changes of the Laser-Induced Blue, Green and Red Fluorescence Signatures during Greening of Etiolated Leaves of Wheat , 1992 .

[15]  Francine Heisel,et al.  Uptake of the Herbicide Diuron as Visualised by the Fluorescence Imaging Technique , 1997 .

[16]  W. Bilger,et al.  Progress in Chlorophyll Fluorescence Research: Major Developments During the Past Years in Retrospect , 1993 .

[17]  I. Moya Duree de vie et rendement de fluorescence de la chlorophylle in vivo. Leur relation dans differents modeles d'unites photosynthetiques , 1974 .

[18]  J Johansson,et al.  Fluorescence lidar multicolor imaging of vegetation. , 1994, Applied optics.

[19]  D. C. Gitz,et al.  Effects of UV‐B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves , 1995 .

[20]  R. Hartley,et al.  Phenolic constituents of the cell walls of monocotyledons , 1980 .

[21]  W. Rice,et al.  Ultraviolet absorption and epidermal-transmittance spectra in foliage , 1994 .

[22]  J. Vandermeer,et al.  Physiological ecology of crops in relation to light, water and temperature. , 1990 .

[23]  Y Saito,et al.  Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring. , 1998, Applied optics.

[24]  H. Lichtenthaler,et al.  Remote Multi-colour Fluorescence Imaging of Selected Broad-leaf Plants , 1995 .

[25]  Studies on the localization and spectral characteristics of the fluorescence emission of differently pigmented wheat leaves , 1993 .

[26]  F. C. Hartman,et al.  Structure, Function, Regulation, and Assembly of D-Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase , 1994 .

[27]  J. Bornman,et al.  Phenylpropanoid compounds in primary leaf tissues of rye (Secale cereale). Light response of their metabolism and the possible role in UV-B protection , 1996 .

[28]  Hartmut K. Lichtenthaler,et al.  Changes in the Blue-Green and Red Fluorescence-Emission Spectra of Beech Leaves during the Autumnal Chlorophyll Breakdown , 1991 .

[29]  R. Hartley,et al.  Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy , 1976, Nature.

[30]  W. Lüdeker,et al.  Remote sensing vegetation status by laser-induced fluorescence , 1994 .

[31]  M. Caldwell,et al.  Chapter 4 – SOLAR UV IRRADIATION AND THE GROWTH AND DEVELOPMENT OF HIGHER PLANTS , 1971 .

[32]  G. Guyot,et al.  Physical measurements and signatures in remote sensing , 1992 .

[33]  H. Lichtenthaler,et al.  Characterization of the laser-induced blue, green and red fluorescence signatures of leaves of wheat and soybean grown under different irradiance. , 1993, Physiologia plantarum.

[34]  Govindjee,et al.  Light Emission by Plants and Bacteria , 1986 .

[35]  J. W. McClure,et al.  Effects of UV-B on activities of enzymes of secondary phenolic metabolism in barley primary leaves , 1995 .

[36]  Giovanni Agati,et al.  ANALYSIS OF LASER‐INDUCED FLUORESCENCE LINE SHAPE OF INTACT LEAVES: APPLICATION TO UV STRESS DETECTION , 1995 .

[37]  Z. Cerovic,et al.  Time-resolved blue-green fluorescence of sugar beet (Beta vulgaris L.) leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis , 1996 .

[38]  H. Lichtenthaler,et al.  Blue, green, and red fluorescence emission signatures of green, etiolated, and white leaves☆ , 1994 .

[39]  S. Long,et al.  Chlorophyll Fluorescence as a Probe of the Photosynthetic Competence of Leaves in the Field: A Review of Current Instrumentation , 1989 .

[40]  W. Lüdeker,et al.  Detection of Fungal Infection of Plants by Laser-induced Fluorescence: An Attempt to Use Remote Sensing , 1996 .

[41]  Applications of chlorophyll fluorescence: In photosynthesis research, stress physiology, hydrobiology and remote sensing , 1990, Plant Growth Regulation.

[42]  N. Baker,et al.  Evaluation of a technique for the measurement of chlorophyll fluorescence from leaves exposed to continuous white light , 1985 .

[43]  Francine Heisel,et al.  Remote Sensing of Plants by Streak Camera Lifetime Measurements of the Chlorophyll a Emissionα , 1996 .

[44]  Giovanni Agati,et al.  The F685/F730 Chlorophyll Fluorescence Ratio as Indicator of Chilling Stress in Plants , 1996 .

[45]  E. Chappelle,et al.  Evaluating photosynthesis in boreal forest species with fluorescence measurements , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[46]  Francine Heisel,et al.  Fluorescence Imaging of Water and Temperature Stress in Plant Leaves , 1996 .

[47]  Moon S. Kim,et al.  Fluorescence imaging of soybean flavonol isolines , 1998, Defense, Security, and Sensing.

[48]  J. McMurtrey,et al.  Laser-induced fluorescence of green plants. 2: LIF caused by nutrient deficiencies in corn. , 1984, Applied optics.

[49]  C. Andary,et al.  Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris and V. rotundifolia and the downy mildew fungus, Plasmopara viticola , 1995 .

[50]  I. Moya,et al.  Spectral characteristics and a possible topological assignment of blue green fluorescence excited by UV laser on leaves of unrelated species , 1994 .

[51]  D. Rayner,et al.  Field performance of a laser fluorosensor for the detection of oil spills , 1979, IEEE Journal of Quantum Electronics.

[52]  M. Frenz,et al.  Time-resolved fluorescence of conifers exposed to environmental pollutants , 1986, Radiation and environmental biophysics.

[53]  Hartmut K. Lichtenthaler,et al.  Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. , 1998 .

[54]  R. Swift,et al.  Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream Warm Core Ring. , 1983, Applied optics.

[55]  Takao Kobayashi,et al.  Techniques for laser remote sensing of the environment , 1987 .

[56]  I. Moya,et al.  Remote and Near-Contact Chlorophyll Fluorescence during Photosynthetic Induction in Iron-Deficient Sugar Beet Leaves , 1999 .

[57]  Evan H. DeLucia,et al.  Ultraviolet‐B and visible light penetration into needles of two species of subalpine conifers during foliar development , 1992 .

[58]  Z. Cerovic,et al.  Characterization of Blue-Green Fluorescence in the Mesophyll of Sugar Beet (Beta vulgaris L.) Leaves Affected by Iron Deficiency , 1994, Plant physiology.

[59]  Hartmut K. Lichtenthaler,et al.  Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements , 1998 .

[60]  J. McMurtrey,et al.  Laser-induced fluorescence of green plants. 3: LIF spectral signatures of five major plant types. , 1985, Applied optics.

[61]  J. Sheahan SINAPATE ESTERS PROVIDE GREATER UV-B ATTENUATION THAN FLAVONOIDS IN ARABIDOPSIS THALIANA (BRASSICACEAE) , 1996 .

[62]  Yves Goulas,et al.  Fluorosensing of water stress in plants: Diurnal changes of the mean lifetime and yield of chlorophyll fluorescence, measured simultaneously and at distance with a τ-LIDAR and a modified PAM-fluorimeter, in maize, sugar beet, and kalanchoë☆ , 1996 .

[63]  Jeffrey B. Harborne,et al.  The flavonoids: recent advances. , 1988 .

[64]  U. Schreiber,et al.  Practical Applications of Fluorometric Methods to Algae and Higher Plant Research , 1986 .

[65]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .

[66]  W. Bilger,et al.  Diurnal changes in flavonoids , 1996 .

[67]  G. Schmuck,et al.  Application of chlorophyll fluorescence in ecophysiology , 1986, Radiation and environmental biophysics.

[68]  Giovanni Agati,et al.  Remote sensing of chlorophyll a fluorescence of vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses , 1994 .

[69]  H. Nilsson Remote sensing and image analysis in plant pathology. , 1995, Annual review of phytopathology.

[70]  Hartmut K. Lichtenthaler,et al.  Fluorescence imaging as a diagnostic tool for plant stress , 1997 .

[71]  Sune Svanberg,et al.  Fluorescence Lidar Monitoring of Vegetation Status , 1995 .

[72]  H. Lichtenthaler,et al.  Studies on the constancy of the blue and green fluorescence yield during the chlorophyll fluorescence induction kinetics (Kautsky effect) , 1993, Radiation and environmental biophysics.

[73]  J. Briantais,et al.  18 – Chlorophyll a Fluorescence of Higher Plants: Chloroplasts and Leaves , 1986 .

[74]  N. Benhamou,et al.  Induction of systemic resistance to Pythium damping-off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response. , 1998, The Plant journal : for cell and molecular biology.

[75]  Moon S. Kim,et al.  Identification of the pigment responsible for the blue fluorescence band in the laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis , 1991 .

[76]  W. L. Butler,et al.  Fluorescence quenching in photosystem II of chloroplasts. , 1975, Biochimica et biophysica acta.

[77]  J. McMurtrey,et al.  Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation. , 1984, Applied optics.

[78]  K. König,et al.  3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope. , 1996, Cellular and Molecular Biology.

[79]  Analysis of Reflectance and Fluorescence Spectra forAtypical Features: Fluorescence in the Yellow-green , 1996 .

[80]  Changes in laser-induced chlorophyll fluorescence ratio F690/F735 in the poikilochlorophyllous desiccation tolerant plant Xerophyta scabrida during desiccation , 1998 .

[81]  M. Broglia,et al.  Blue-green laser-induced fluorescence from intact leaves: actinic light sensitivity and subcellular origins. , 1993, Applied optics.

[82]  Francine Heisel,et al.  Detection of Nutrient Deficiencies of Maize by Laser Induced Fluorescence Imaging , 1996 .

[83]  Giovanna Cecchi,et al.  Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques , 1994 .

[84]  Peter G. Waterman,et al.  Analysis of Phenolic Plant Metabolites , 1994 .

[85]  J. Briantais,et al.  The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence , 1989 .

[86]  R. Dixon,et al.  Stress-Induced Phenylpropanoid Metabolism. , 1995, The Plant cell.

[87]  A. F. Theisen Fluorescence Changes in a Drying Maple Leaf Observed in the Visible and Near-Infrared , 1988 .

[88]  L. Corp,et al.  UV band fluorescence (in vivo) and its implications for the remote assessment of nitrogen supply in vegetation , 1997 .

[89]  J. Johansson,et al.  Remote fluorescence measurements of vegetation spectrally resolved and by multi-colour fluorescence imaging , 1996 .

[90]  Jeroen Vos,et al.  Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato , 1998 .

[91]  A. Gitelson,et al.  Plant Stress Detection by Reflectance and Fluorescence a , 1998 .

[92]  G. Guyot,et al.  Measurement of laser‐induced fluorescence decay and reflectance of plant canopies , 1997 .

[93]  E. Wollenweber,et al.  Occurrence and distribution of free flavonoid aglycones in plants , 1981 .

[94]  Hartmut K. Lichtenthaler,et al.  Nature And Variation Of Blue Fluorescence Spectraof Terrestrial Plants , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[95]  Hartmut K. Lichtenthaler,et al.  Principles and characteristics of multi-colour fluorescence imaging of plants , 1998 .

[96]  Ismael Moya,et al.  Time-resolved blue-green fluorescence of sugar beet leaves. Temperature-induced changes and consequences for the potential use of blue-green fluorescence as a signature for remote sensing of plants , 1998 .

[97]  George Papageorgiou,et al.  6 – Chlorophyll Fluorescence: An Intrinsic Probe of Photosynthesis , 1975 .

[98]  Francine Heisel,et al.  Detection of vegetation stress via a new high resolution fluorescence imaging system , 1996 .

[99]  Alberto Palliotti,et al.  Blue‐green fluorescence excited by UV laser on leaves of different species originates from cutin and is sensitive to leaf temperature , 1994 .

[100]  E. C. Bate-smith The phenolic constituents of plants and their taxonomic significance , 1968 .

[101]  G. Mohammed,et al.  Chlorophyll fluorescence: A review of its practical forestry applications and instrumentation , 1995 .

[102]  P. Albersheim,et al.  PHYTOALEXINS AND THEIR ELICITORS-A Defense Against Microbial Infection in Plants , 1984 .

[103]  H. Dau MOLECULAR MECHANISMS AND QUANTITATIVE MODELS OF VARIABLE PHOTOSYSTEM II FLUORESCENCE , 1994 .

[104]  Moon S. Kim,et al.  Fluorescence imaging system: application for the assessment of vegetation stresses , 1997, Remote Sensing.

[105]  R. Reuter,et al.  Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution , 1994 .

[106]  H. Lichtenthaler,et al.  Fluorescence emission spectra of plant leaves and plant constituents , 1991, Radiation and environmental biophysics.

[107]  Hartmut K. Lichtenthaler,et al.  The Role of Chlorophyll Fluorescence in The Detection of Stress Conditions in Plants , 1988 .

[108]  Ulrich Schreiber,et al.  Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence , 1997 .

[109]  Laser-induced imaging of blue/red and blue/far-red fluorescence ratios, F440/F690 and F440/F740, as a means of early stress detection in plants , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[110]  Kenneth J. Boote,et al.  Physiology and Determination of Crop Yield , 1994 .

[111]  M. Koizumi,et al.  Laser induced fluorescence of tree leaves: spectral changes with plant species and seasons , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[112]  J. Roden,et al.  Applications of Chlorophyll Fluorescence to Forest Ecology , 1995 .

[113]  W. Bilger,et al.  Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis , 1994 .

[114]  P. Ribéreau-Gayon,et al.  Les composés phénoliques des végétaux , 1968 .

[115]  Darrel L. Williams,et al.  Laser-Induced Fluorescence (LIF) from Plant Foliage , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[116]  I. Moya,et al.  Lifetime of Excited States and Quantum Yield of Chlorophyll a Fluorescence in Vivo , 1986 .

[117]  H. Schnabl,et al.  Flavonol content of guard cell and mesophyll cell protoplasts isolated from Vicia faba leaves , 1984 .

[118]  W. Niessen,et al.  Free and cell wall-bound phenolics and other constituents from healthy and fungus-infected carnation (Dianthus caryophyllus L.) stems , 1991 .

[119]  Giovanni Agati,et al.  The F685/F730 Chlorophyll Fluorescence Ratio as a Tool in Plant Physiology: Response to Physiological and Environmental Factors** , 1995 .

[120]  Ismael Moya,et al.  Remotely sensed blue and red fluorescence emission for monitoring vegetation , 1992 .