Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

[1]  Debora S Marks,et al.  Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity. , 2015, Structure.

[2]  B. Honig,et al.  Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions , 2015, Cell.

[3]  Masahito Yamagata,et al.  SIDEKICK 2 DIRECTS FORMATION OF A RETINAL CIRCUIT THAT DETECTS DIFFERENTIAL MOTION , 2015, Nature.

[4]  D. Schreiner,et al.  Protein Kinase C Phosphorylation of a γ-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization* , 2015, The Journal of Biological Chemistry.

[5]  Dimitar Kostadinov,et al.  Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function , 2015, eLife.

[6]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[7]  J. Tapia,et al.  Single-Cell Identity Generated by Combinatorial Homophilic Interactions between α, β, and γ Protocadherins , 2014, Cell.

[8]  J. Sanes,et al.  Type II Cadherins Guide Assembly of a Direction-Selective Retinal Circuit , 2014, Cell.

[9]  Y. Yoshimura,et al.  Developmental Epigenetic Modification Regulates Stochastic Expression of Clustered Protocadherin Genes, Generating Single Neuron Diversity , 2014, Neuron.

[10]  D. Schmucker,et al.  Role of self-avoidance in neuronal wiring , 2013, Current Opinion in Neurobiology.

[11]  S. Zipursky,et al.  The molecular basis of self-avoidance. , 2013, Annual review of neuroscience.

[12]  Ben A. Barres,et al.  Emerging roles of astrocytes in neural circuit development , 2013, Nature Reviews Neuroscience.

[13]  Bosiljka Tasic,et al.  Functional Significance of Isoform Diversification in the Protocadherin Gamma Gene Cluster , 2012, Neuron.

[14]  R. Burgess,et al.  DSCAMs: restoring balance to developmental forces , 2012, Front. Mol. Neurosci..

[15]  M. Capecchi,et al.  Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. , 2012, Journal of molecular cell biology.

[16]  Tom Maniatis,et al.  PROTOCADHERINS MEDIATE DENDRITIC SELF-AVOIDANCE IN THE MAMMALIAN NERVOUS SYSTEM , 2012, Nature.

[17]  D. Schreiner,et al.  γ-Protocadherins Control Cortical Dendrite Arborization by Regulating the Activity of a FAK/PKC/MARCKS Signaling Pathway , 2012, Neuron.

[18]  T. Yagi Molecular codes for neuronal individuality and cell assembly in the brain , 2012, Front. Mol. Neurosci..

[19]  J. Weiner,et al.  Center for Molecular Medicine, , 2011 .

[20]  Mark Ellisman,et al.  Cadherin-9 Regulates Synapse-Specific Differentiation in the Developing Hippocampus , 2011, Neuron.

[21]  J. Nathans,et al.  Class 5 Transmembrane Semaphorins Control Selective Mammalian Retinal Lamination and Function , 2011, Neuron.

[22]  Tudor C. Badea,et al.  Transmembrane semaphorin signaling controls laminar stratification in the mammalian retina , 2010, Nature.

[23]  J. Sanes,et al.  Chemoaffinity Revisited: Dscams, Protocadherins, and Neural Circuit Assembly , 2010, Cell.

[24]  W. Janssen,et al.  Gamma‐protocadherins are enriched and transported in specialized vesicles associated with the secretory pathway in neurons , 2010, The European journal of neuroscience.

[25]  D. Schreiner,et al.  Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion , 2010, Proceedings of the National Academy of Sciences.

[26]  Xiaozhong Wang,et al.  Gamma-protocadherins regulate the functional integrity of hypothalamic feeding circuitry in mice. , 2010, Developmental biology.

[27]  Xiaozhong Wang,et al.  Proteomics Analysis Reveals Overlapping Functions of Clustered Protocadherins* , 2009, Molecular & Cellular Proteomics.

[28]  J. Weiner,et al.  Control of CNS Synapse Development by γ-Protocadherin-Mediated Astrocyte–Neuron Contact , 2009, The Journal of Neuroscience.

[29]  H. Kiyonari,et al.  Total Expression and Dual Gene-regulatory Mechanisms Maintained in Deletions and Duplications of the Pcdha Cluster* , 2009, The Journal of Biological Chemistry.

[30]  Semie Kang,et al.  Gamma-protocadherin homophilic interaction and intracellular trafficking is controlled by the cytoplasmic domain in neurons , 2009, Molecular and Cellular Neuroscience.

[31]  J. Weiner,et al.  A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-γ gene cluster , 2008, Development.

[32]  J. Sanes,et al.  γ-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina , 2008, Development.

[33]  J. Sanes,et al.  Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina , 2008, Nature.

[34]  B. Dickson,et al.  Dscam diversity is essential for neuronal wiring and self-recognition , 2007, Nature.

[35]  Qiang Wu,et al.  Sequence analysis and expression mapping of the rat clustered protocadherin gene repertoires , 2007, Neuroscience.

[36]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[37]  R. Kaneko,et al.  Allelic Gene Regulation of Pcdh-α and Pcdh-γ Clusters Involving Both Monoallelic and Biallelic Expression in Single Purkinje Cells* , 2006, Journal of Biological Chemistry.

[38]  P. Saftig,et al.  Regulated ADAM10-dependent Ectodomain Shedding of γ-Protocadherin C3 Modulates Cell-Cell Adhesion* , 2006, Journal of Biological Chemistry.

[39]  Robert A. McGovern,et al.  Divergence of Melanocortin Pathways in the Control of Food Intake and Energy Expenditure , 2005, Cell.

[40]  W. Shan,et al.  Differential expression of individual gamma-protocadherins during mouse brain development , 2005, Molecular and Cellular Neuroscience.

[41]  R. Kemler,et al.  Presenilin-dependent Processing and Nuclear Function of γ-Protocadherins* , 2005, Journal of Biological Chemistry.

[42]  J. Sanes,et al.  Gamma protocadherins are required for synaptic development in the spinal cord. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  T. Yagi,et al.  Interaction with Protocadherin-γ Regulates the Cell Surface Expression of Protocadherin-α* , 2004, Journal of Biological Chemistry.

[44]  M. Sofroniew,et al.  GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain , 2004, Nature Neuroscience.

[45]  J. C. Clemens,et al.  Alternative Splicing of Drosophila Dscam Generates Axon Guidance Receptors that Exhibit Isoform-Specific Homophilic Binding , 2004, Cell.

[46]  Barry J. Dickson Molecular Mechanisms of Axon Guidance , 2002, Science.

[47]  J. Sanes,et al.  Gamma Protocadherins Are Required for Survival of Spinal Interneurons , 2002, Neuron.

[48]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[49]  Luis Puelles,et al.  Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage , 2002, The Journal of Neuroscience.

[50]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[51]  T. Maniatis,et al.  A Striking Organization of a Large Family of Human Neural Cadherin-like Cell Adhesion Genes , 1999, Cell.

[52]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.