Tuning structural, electrical, linear, and nonlinear optical properties of cadmium zinc telluride quantum dot thin films

Quantum dots of Cd0.18Zn0.14Te0.68 thin films of various thicknesses are deposited on a glass substrate using inert gas condensation and characterized using many techniques. Structural analysis confirms the cubic polymorph of the thin films. The particle size increased from 5.7 to 10.35 nm as the film thickness increased from 10 to 100 nm. Bandgap calculations show two direct allowed transitions, one of which is 1.8 eV for different thicknesses. The other transition changes from the ultra-violet region (3.7 eV) for 10 nm thickness to yellow (2 eV) for 100 nm thickness, depending on the particle size. This result suggests that this material is suitable for use in multiple absorption layers of the same material rather than multilayers of different materials in tandem solar cells. The optical linear and nonlinear parameters highly depend on the particle size. Electrical conductivity shows intrinsic conduction with low activation energies from ambient temperature to 336 K. Graphical abstract

[1]  M. Lal,et al.  Fabrication and characterization of Cd1-xZnxTe thin films for photovoltaic applications , 2021 .

[2]  Hyun‐Seok Kim,et al.  Photoelectrochemical solar cell study of electrochemically synthesized Cd1-xZnxTe thin films , 2021, Solar Energy.

[3]  Jian Huang,et al.  Close-Spaced Sublimation of CdZnTe:In Films for Solar Energy Water Splitting , 2021 .

[4]  I. A. Mahdy,et al.  Linear and nonlinear optical response dependency on the crystallite size of CdTe and its structural properties , 2021 .

[5]  M. Muddassir,et al.  A simulation approach for investigating the performances of cadmium telluride solar cells using doping concentrations, carrier lifetimes, thickness of layers, and band gaps , 2021 .

[6]  Xing-hua Zhu,et al.  Large-area CdZnTe thick film based array X-ray detector , 2021 .

[7]  I. A. Mahdy,et al.  Tin telluride quantum dot thin films: Size dependent structural, optical and electrical properties , 2021 .

[8]  P. Mittal,et al.  Impact of ZnTe, SbZnTe and SnZnTe absorber materials for multi-layered solar cell: Parametric extraction and layer wise internal analysis , 2020 .

[9]  Wael Sabry Mohamed,et al.  Structure and optical properties of polycrystalline ZnSe thin films: validity of Swanepol’s approach for calculating the optical parameters , 2020, Materials Research Express.

[10]  G. Kartopu,et al.  Properties of Arsenic–Doped ZnTe Thin Films as a Back Contact for CdTe Solar Cells , 2019, Materials.

[11]  Jian Huang,et al.  Growth and properties of CdZnTe films on different substrates , 2019, Surface and Coatings Technology.

[12]  M. Zubair,et al.  Thickness dependent correlation between structural and optical properties of textured CdSe thin film , 2019, AIP Advances.

[13]  B. Marí,et al.  Influence of P+-ZnTe back surface contact on photovoltaic performance of ZnTe based solar cells , 2018, Optical and Quantum Electronics.

[14]  A. H. Shaban,et al.  Fabrication and characterization study of ZnTe/n-Si heterojunction solar cell application , 2018 .

[15]  Cullis Microscopy of Semiconducting Materials 2003 , 2017 .

[16]  I. A. Mahdy,et al.  Study of the structural, electrical and optical properties of Ge-Pb-Te nanocrystals , 2016 .

[17]  S. Chander,et al.  Optimization of structural, optical and electrical properties of CdZnTe thin films with the application of thermal treatment , 2016 .

[18]  S. Chander,et al.  Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells , 2016 .

[19]  M. Alkaisi,et al.  Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen , 2016, Journal of Materials Science: Materials in Electronics.

[20]  U. Roy,et al.  Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors , 2016, Scientific Reports.

[21]  B. Marí,et al.  Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance , 2016 .

[22]  S. Chander,et al.  Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications , 2016 .

[23]  I. M. Dharmadasa,et al.  Growth and characterisation of n- and p-type ZnTe thin films for applications in electronic devices , 2016 .

[24]  M. Ghoranneviss,et al.  Optical absorption enhancement of CdTe nanostructures by low-energy nitrogen ion bombardment , 2016 .

[25]  Ambika Sharma,et al.  Study of Se based quaternary SePb(Bi,Te) chalcogenide thin films for their linear and nonlinear optical properties , 2016 .

[26]  I. A. Mahdy,et al.  Characterization of Pb₂₄Te₇₆ quantum dot thin film synthesized by inert gas condensation. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[27]  I. K. El Zawawi,et al.  Air-stable Cd0.23Zn0.77Te nanostructure thin films , 2015, Journal of Materials Science: Materials in Electronics.

[28]  N. S. Das,et al.  Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering , 2014 .

[29]  K. T. Ramesh,et al.  Pulse electrodeposited AgInS2 films , 2014, Journal of Materials Science: Materials in Electronics.

[30]  I. A. Mahdy,et al.  Structural and optical properties of PbSe nanostructure thin films prepared by inert gas condensation , 2014 .

[31]  I. M. Dharmadasa,et al.  Development of ZnTe layers using an electrochemical technique for applications in thin-film solar cells , 2013 .

[32]  I. K. El Zawawi,et al.  Synthesis and characterization of low particle size nanocrystalline SnSe thin films , 2013, Journal of Materials Science: Materials in Electronics.

[33]  E. Yilmaz,et al.  An Investigation of CdZnTe Thin Films for Photovoltaics , 2011 .

[34]  M. M. Kamble,et al.  Determination of the optical parameters of a-Si:H thin films deposited by hot wire–chemical vapour deposition technique using transmission spectrum only , 2011 .

[35]  Ju-liang He,et al.  The influences of thickness on the optical and electrical properties of dual-ion-beam sputtering-deposited molybdenum-doped zinc oxide layer , 2011 .

[36]  M. Wasiucionek,et al.  Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glasses , 2009 .

[37]  Qiguang Yang,et al.  Ultrafast Time-Resolved DFWM of CdTe Quantum Dots in Toluene , 2008 .

[38]  R. French,et al.  {Kramers–Kronig} transform for the surface energy loss function , 2005 .

[39]  R. French Origins and Applications of London Dispersion Forces and Hamaker Constants in Ceramics , 2004 .

[40]  R. Sathyamoorthy,et al.  Characterization of CdTe thin film—dependence of structural and optical properties on temperature and thickness , 2004 .

[41]  Arthur J. Nozik,et al.  Synthesis and Characterization of Surface-Modified Colloidal CdTe Quantum Dots , 1993 .

[42]  Robert D. Feldman,et al.  Room‐temperature excitonic saturation in CdZnTe/ZnTe quantum wells , 1990 .

[43]  J. Tauc,et al.  Amorphous and liquid semiconductors , 1974 .

[44]  R. Turan,et al.  Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays , 1970 .