Multiscale Asymptotic Method for Maxwell's Equations in Composite Materials

In this paper we discuss the multiscale analysis of Maxwell's equations in composite materials with a periodic microstructure. The new contributions in this paper are the determination of higher-order correctors and the explicit convergence rate for the approximate solutions (see Theorem 2.3). Consequently, we present the multiscale finite element method and derive the convergence result (see Theorem 4.1). The numerical results demonstrate that higher-order correctors are essential for solving Maxwell's equations in composite materials.

[1]  Niklas Wellander Homogenization of the Maxwell Equations: Case II. Nonlinear Conductivity , 2002 .

[2]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[3]  Qun Lin,et al.  Global superconvergence for Maxwell's equations , 2000, Math. Comput..

[4]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[5]  Alain Bossavit ON THE HOMOGENIZATION OF MAXWELL EQUATIONS , 1995 .

[6]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[7]  K. Inoue,et al.  Photonic crystals : physics, fabrication and applications , 2004 .

[8]  J. Kong Electromagnetic Wave Theory , 1986 .

[9]  Weiying Zheng,et al.  An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..

[10]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[11]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[12]  Peter Monk,et al.  A finite element method for approximating the time-harmonic Maxwell equations , 1992 .

[13]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[14]  Daniel Sjöberg,et al.  Homogenization of Dispersive Material Parameters for Maxwell's Equations Using a Singular Value Decomposition , 2005, Multiscale Model. Simul..

[15]  Jun-zhi Cui,et al.  Multiscale Asymptotic Analysis and Numerical Simulation for the Second Order Helmholtz Equations with Rapidly Oscillating Coefficients Over General Convex Domains , 2002, SIAM J. Numer. Anal..

[16]  Volker Vogelsang,et al.  On the strong unique continuation principle for inequalities of Maxwell type , 1991 .

[17]  Liqun Cao,et al.  The hole-filling method and the uniform multiscale computation of the elastic equations in perforated domains , 2008 .

[18]  François Dubois,et al.  Discrete vector potential representation of a divergence-free vector field in three dimensional domains: numerical analysis of a model problem , 1990 .

[19]  J. Kong,et al.  Dielectric properties of heterogeneous materials , 1992 .

[20]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[21]  Doina Cioranescu,et al.  Homogenization of Periodically Varying Coefficients in Electromagnetic Materials , 2006, J. Sci. Comput..

[22]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[23]  Alain Bossavit,et al.  Modelling of periodic electromagnetic structures bianisotropic materials with memory effects , 2005 .

[24]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[25]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[26]  Zhiming Chen,et al.  An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems , 2007, Math. Comput..

[27]  S. Savescu Dielectric properties of heterogeneous materials , 2009 .

[28]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[29]  Peter Monk,et al.  An analysis of Ne´de´lec's method for the spatial discretization of Maxwell's equations , 1993 .

[30]  Gerhard Kristensson,et al.  Homogenization of the Maxwell equations in an anisotropic material , 2002 .

[31]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[32]  Jun-zhi Cui,et al.  Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains , 2004, Numerische Mathematik.

[33]  Adel Razek,et al.  Homogenization technique for Maxwell equations in periodic structures , 1997 .

[34]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[35]  O. Oleinik,et al.  Mathematical Problems in Elasticity and Homogenization , 2012 .

[36]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[37]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[38]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[39]  Peter Monk,et al.  Analysis of a finite element method for Maxwell's equations , 1992 .

[40]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[41]  Gerhard Kristensson,et al.  Homogenization of the Maxwell Equations at Fixed Frequency , 2003, SIAM J. Appl. Math..

[42]  Gérard A. Maugin,et al.  Electrodynamics of Continua I: Foundations and Solid Media , 1989 .

[43]  Doina Cioranescu,et al.  Periodic unfolding and homogenization , 2002 .

[44]  R. Hoppe,et al.  Residual based a posteriori error estimators for eddy current computation , 2000 .

[45]  Christian Engström,et al.  A Comparison of two numerical methods for homogenization of Maxwell's equations , 2004 .

[46]  Homogenization of Maxwell's equations in dissipative bianisotropic media , 2003 .

[47]  Serge Nicaise,et al.  Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations , 2001, SIAM J. Numer. Anal..

[48]  G. Allaire Homogenization and two-scale convergence , 1992 .

[49]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[50]  Niklas Wellander,et al.  Homogenization of the Maxwell Equations: Case I. Linear Theory , 2001 .

[51]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .