Multiscale Asymptotic Method for Maxwell's Equations in Composite Materials
暂无分享,去创建一个
Ya Zhang | Walter Allegretto | Yanping Lin | Li-Qun Cao | Yanping Lin | W. Allegretto | Li-qun Cao | Ya Zhang
[1] Niklas Wellander. Homogenization of the Maxwell Equations: Case II. Nonlinear Conductivity , 2002 .
[2] M. Costabel,et al. Singularities of Maxwell interface problems , 1999 .
[3] Qun Lin,et al. Global superconvergence for Maxwell's equations , 2000, Math. Comput..
[4] Steven G. Johnson,et al. Photonic Crystals: Molding the Flow of Light , 1995 .
[5] Alain Bossavit. ON THE HOMOGENIZATION OF MAXWELL EQUATIONS , 1995 .
[6] Kazuaki Sakoda,et al. Optical Properties of Photonic Crystals , 2001 .
[7] K. Inoue,et al. Photonic crystals : physics, fabrication and applications , 2004 .
[8] J. Kong. Electromagnetic Wave Theory , 1986 .
[9] Weiying Zheng,et al. An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..
[10] Ari Sihvola,et al. Electromagnetic mixing formulas and applications , 1999 .
[11] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[12] Peter Monk,et al. A finite element method for approximating the time-harmonic Maxwell equations , 1992 .
[13] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[14] Daniel Sjöberg,et al. Homogenization of Dispersive Material Parameters for Maxwell's Equations Using a Singular Value Decomposition , 2005, Multiscale Model. Simul..
[15] Jun-zhi Cui,et al. Multiscale Asymptotic Analysis and Numerical Simulation for the Second Order Helmholtz Equations with Rapidly Oscillating Coefficients Over General Convex Domains , 2002, SIAM J. Numer. Anal..
[16] Volker Vogelsang,et al. On the strong unique continuation principle for inequalities of Maxwell type , 1991 .
[17] Liqun Cao,et al. The hole-filling method and the uniform multiscale computation of the elastic equations in perforated domains , 2008 .
[18] François Dubois,et al. Discrete vector potential representation of a divergence-free vector field in three dimensional domains: numerical analysis of a model problem , 1990 .
[19] J. Kong,et al. Dielectric properties of heterogeneous materials , 1992 .
[20] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[21] Doina Cioranescu,et al. Homogenization of Periodically Varying Coefficients in Electromagnetic Materials , 2006, J. Sci. Comput..
[22] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .
[23] Alain Bossavit,et al. Modelling of periodic electromagnetic structures bianisotropic materials with memory effects , 2005 .
[24] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[25] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[26] Zhiming Chen,et al. An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems , 2007, Math. Comput..
[27] S. Savescu. Dielectric properties of heterogeneous materials , 2009 .
[28] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[29] Peter Monk,et al. An analysis of Ne´de´lec's method for the spatial discretization of Maxwell's equations , 1993 .
[30] Gerhard Kristensson,et al. Homogenization of the Maxwell equations in an anisotropic material , 2002 .
[31] Martin Costabel,et al. Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.
[32] Jun-zhi Cui,et al. Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains , 2004, Numerische Mathematik.
[33] Adel Razek,et al. Homogenization technique for Maxwell equations in periodic structures , 1997 .
[34] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization , 1989 .
[35] O. Oleinik,et al. Mathematical Problems in Elasticity and Homogenization , 2012 .
[36] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[37] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[38] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[39] Peter Monk,et al. Analysis of a finite element method for Maxwell's equations , 1992 .
[40] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[41] Gerhard Kristensson,et al. Homogenization of the Maxwell Equations at Fixed Frequency , 2003, SIAM J. Appl. Math..
[42] Gérard A. Maugin,et al. Electrodynamics of Continua I: Foundations and Solid Media , 1989 .
[43] Doina Cioranescu,et al. Periodic unfolding and homogenization , 2002 .
[44] R. Hoppe,et al. Residual based a posteriori error estimators for eddy current computation , 2000 .
[45] Christian Engström,et al. A Comparison of two numerical methods for homogenization of Maxwell's equations , 2004 .
[46] Homogenization of Maxwell's equations in dissipative bianisotropic media , 2003 .
[47] Serge Nicaise,et al. Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations , 2001, SIAM J. Numer. Anal..
[48] G. Allaire. Homogenization and two-scale convergence , 1992 .
[49] R. Fox,et al. Classical Electrodynamics, 3rd ed. , 1999 .
[50] Niklas Wellander,et al. Homogenization of the Maxwell Equations: Case I. Linear Theory , 2001 .
[51] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .