Core Formation by a Population of Massive Remnants

Core radii of globular clusters in the Large and Small Magellanic Clouds show an increasing trend with age. We propose that this trend is a dynamical effect resulting from the accumulation of massive stars and stellarmass black holes at the cluster centers. The black holes are remnants of stars with initial masses exceeding ∼20– 25 M,; as their orbits decay by dynamical friction, they heat the stellar background and create a core. Using analytical estimates and N-body experiments, we show that the sizes of the cores so produced and their growth rates are consistent with what is observed. We propose that this mechanism is responsible for the formation of cores in all globular clusters and possibly in other systems as well. Subject headings: black hole physics — galaxies: nuclei — gravitation — gravitational waves

[1]  Dark halo properties from rotation curves , 2002, astro-ph/0201352.

[2]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[3]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[4]  Armin Rest,et al.  Galaxy cores as relics of black hole mergers , 2002 .

[5]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[6]  W. David Arnett,et al.  Computational astrophysics , 1985, CACM.

[7]  R. Elson Surface brightness profiles for five rich star clusters in the Large Magellanic Cloud , 1992 .

[8]  Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, astro-ph/0007176.

[9]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[10]  Kiel,et al.  The efficiency of the spiral- in of a black hole to the Galactic centre , 2002, astro-ph/0212494.

[11]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[12]  F. Schweizer Erratum - Effects of Seeing on the Light Distribution in the Cores of Elliptical Galaxies , 1979 .

[13]  F. A. Rasio,et al.  THERMAL AND DYNAMICAL EQUILIBRIUM IN TWO-COMPONENT STAR CLUSTERS , 2000 .

[14]  S. Tremaine,et al.  Galaxies with a Central Minimum in Stellar Luminosity Density , 2002, astro-ph/0206122.

[15]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[16]  S. Bergh Star clusters in the clouds of Magellan , 1991 .

[17]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[18]  Piet Hut,et al.  Core radius and density measurements in N-body experiments Connections with theoretical and observational definitions , 1985 .

[19]  Vrba,et al.  The Discovery of an Embedded Cluster of High-Mass Stars near SGR 1900+14 , 2000, The Astrophysical journal.

[20]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[21]  R. Elson The structure and evolution of rich star clusters in the Large Magellanic Cloud , 1991 .

[22]  R. Larson Black hole remnants in globular clusters , 1984 .

[23]  R. Spurzem Direct N-body simulations , 1999, astro-ph/9906154.

[24]  A. D. Mackey,et al.  Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud , 2002, astro-ph/0209031.

[25]  Ny,et al.  Core radius evolution of star clusters , 2003 .

[26]  Tod R. Lauer,et al.  Core expansion in young star clusters in the Large Magellanic Cloud , 1989 .

[27]  T. Ebisuzaki,et al.  Merging of two galaxies with central black holes , 1991, Nature.

[28]  Andreas Quirrenbach,et al.  Adaptive Optics Near-Infrared Imaging of R136 in 30 Doradus: The Stellar Population of a Nearby Starburst , 1996 .