Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy

[1]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[2]  Markus Glatzel,et al.  The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. , 2017, Immunity.

[3]  T. Dubovik,et al.  High-dimensional, single-cell characterization of the brain's immune compartment , 2017, Nature Neuroscience.

[4]  Zheng-Xiong Xi,et al.  Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia , 2017, Neuron.

[5]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[6]  Tuan Leng Tay,et al.  A new fate mapping system reveals context-dependent random or clonal expansion of microglia , 2017, Nature Neuroscience.

[7]  D. Gómez-Almaguer,et al.  Altered CSF cytokine network in amyotrophic lateral sclerosis patients: A pathway‐based statistical analysis , 2017, Cytokine.

[8]  Nicole R. Zürcher,et al.  Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis , 2016, Neurology.

[9]  J. Trojanowski,et al.  Progression of motor neuron disease is accelerated and the ability to recover is compromised with advanced age in rNLS8 mice , 2016, Acta Neuropathologica Communications.

[10]  J. Trojanowski,et al.  Selective Motor Neuron Resistance and Recovery in a New Inducible Mouse Model of TDP-43 Proteinopathy , 2016, The Journal of Neuroscience.

[11]  V. Perry,et al.  CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves , 2016, Scientific Reports.

[12]  B. Stevens,et al.  New insights on the role of microglia in synaptic pruning in health and disease , 2016, Current Opinion in Neurobiology.

[13]  J. Trojanowski,et al.  An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice. , 2015, Human molecular genetics.

[14]  Tom Michoel,et al.  Microglial brain region-dependent diversity and selective regional sensitivities to ageing , 2015, Nature Neuroscience.

[15]  F. Ginhoux,et al.  Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems. , 2015, Trends in immunology.

[16]  J. Trojanowski,et al.  Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43 , 2015, Acta Neuropathologica.

[17]  Bruce R. Rosen,et al.  Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: Assessed with [11C]-PBR28 , 2015, NeuroImage: Clinical.

[18]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[19]  John L. Robinson,et al.  TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord , 2014, Acta Neuropathologica.

[20]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[21]  P. Popovich,et al.  Microglia Induce Motor Neuron Death via the Classical NF-κB Pathway in Amyotrophic Lateral Sclerosis , 2014, Neuron.

[22]  B. Stevens,et al.  Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system , 2013, Current Opinion in Neurobiology.

[23]  R. Myers,et al.  A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. , 2013, Cell reports.

[24]  Xiong-hao Liu,et al.  Expression of ALS‐linked TDP‐43 mutant in astrocytes causes non‐cell‐autonomous motor neuron death in rats , 2013, The EMBO journal.

[25]  J. Nabekura,et al.  Microglia: actively surveying and shaping neuronal circuit structure and function , 2013, Trends in Neurosciences.

[26]  Jun Hu,et al.  OSA: a fast and accurate alignment tool for RNA-Seq , 2012, Bioinform..

[27]  M. Caprini,et al.  Copper-Zinc Superoxide Dismutase (SOD1) Is Released by Microglial Cells and Confers Neuroprotection against 6-OHDA Neurotoxicity , 2012, Neurosignals.

[28]  C. Moussa,et al.  Wild type TDP-43 induces neuro-inflammation and alters APP metabolism in lentiviral gene transfer models , 2012, Experimental Neurology.

[29]  S. Petri,et al.  Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB–mediated pathogenic pathways , 2011, The Journal of experimental medicine.

[30]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[31]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[32]  W. Wong,et al.  Age‐related alterations in the dynamic behavior of microglia , 2011, Aging cell.

[33]  J. Kira,et al.  CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis , 2010, Journal of Neuroimmunology.

[34]  G. Rouleau,et al.  Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. , 2010, Human molecular genetics.

[35]  Yuxin Fan,et al.  Sporadic ALS has compartment-specific aberrant exon splicing and altered cell–matrix adhesion biology , 2009, Human molecular genetics.

[36]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[37]  E. Melamed,et al.  Spinal Cord mRNA Profile in Patients with ALS: Comparison with Transgenic Mice Expressing the Human SOD-1 Mutant , 2009, Journal of Molecular Neuroscience.

[38]  W. Alkema,et al.  BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams , 2008, BMC Genomics.

[39]  S. Mckercher,et al.  Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[40]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[41]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[42]  F. Turkheimer,et al.  Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study , 2004, Neurobiology of Disease.

[43]  T. Siddique,et al.  Presence of dendritic cells, MCP‐1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue , 2004, Annals of neurology.

[44]  Minh N. H. Nguyen,et al.  Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice , 2003, Science.

[45]  I. Black,et al.  Brain-Derived Neurotrophic Factor in Astrocytes, Oligodendrocytes, and Microglia/Macrophages after Spinal Cord Injury , 2000, Neurobiology of Disease.

[46]  M. Graeber,et al.  The microglia/macrophage response in the neonatal rat facial nucleus following axotomy , 1998, Brain Research.

[47]  T. K. van den Berg,et al.  Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. , 1996, Journal of immunological methods.

[48]  Pinar Mesci,et al.  Author manuscript, published in "Journal of Neural Transmission 2010;117(8):981-1000" DOI: 10.1007/s00702-010-0429-0 A G Barbeito et al. Motor neuron-immune interactions Motor neuron- immune interactions: the vicious circle of ALS , 2010 .

[49]  E. Buratti,et al.  Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. , 2008, Frontiers in bioscience : a journal and virtual library.

[50]  M. Block,et al.  Microglia-mediated neurotoxicity: uncovering the molecular mechanisms , 2007, Nature Reviews Neuroscience.