Pin(2)-equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture

We define Pin(2)-equivariant Seiberg-Witten Floer homology for rational homology 3-spheres equipped with a spin structure. The analogue of Froyshov's correction term in this setting is an integer-valued invariant of homology cobordism whose mod 2 reduction is the Rokhlin invariant. As an application, we show that there are no homology 3-spheres Y of Rokhlin invariant one such that Y # Y bounds an acyclic smooth 4-manifold. By previous work of Galewski-Stern and Matumoto, this implies the existence of non-triangulable high-dimensional manifolds.

[1]  Tirasan Khandhawit A new gauge slice for the relative Bauer–Furuta invariants , 2014, 1401.7590.

[2]  G. Röst,et al.  Acta Sci. Math. (Szeged) , 2014 .

[3]  F. Quinn THE TRIANGULATION OF MANIFOLDS , 2013, 1310.7644.

[4]  Adagba O Henry,et al.  Transformation of Groups , 2012 .

[5]  Robert D. Edwards,et al.  The Topology of Manifolds and Cell-Like Maps , 2010 .

[6]  Daniel Ruberman,et al.  Seiberg-witten equations, end-periodic dirac operators, and a lift of Rohlin's invariant , 2009, 0905.4319.

[7]  Kim A. Frøyshov Monopole Floer homology for rational homology 3-spheres , 2008, 0809.4842.

[8]  P. B. Kronheimer,et al.  Monopoles and Three-Manifolds , 2008 .

[9]  R. Edwards Suspensions of homology spheres , 2006, math/0610573.

[10]  By M. F. Atiyah THOM COMPLEXES , 2006 .

[11]  Alina Iacob,et al.  Generalized Tate cohomology , 2005 .

[12]  Ciprian Manolescu,et al.  A concordance invariant from the Floer homology of double branched covers , 2005, math/0508065.

[13]  Daniel Ruberman,et al.  Rohlin's invariant and gauge theory II. Mapping tori , 2003, math/0306188.

[14]  Daniel Ruberman,et al.  Rohlin’s invariant and gauge theory, I. Homology 3-tori , 2003, math/0404162.

[15]  S. Bauer A stable cohomotopy refinement of Seiberg-Witten invariants: II , 2002, math/0204267.

[16]  M. Furuta,et al.  MONOPOLE EQUATION AND THE 11 8-CONJECTURE , 2004 .

[17]  J. Harer,et al.  HOMOLOGY 3-SPHERES BOUNDING ACYCLIC 4-MANIFOLDS , 2004 .

[18]  Seiberg-witten Equations , 2004 .

[19]  Ciprian Manolescu A gluing theorem for the relative Bauer-Furuta invariants , 2003, math/0311342.

[20]  P. Ozsváth,et al.  Monopoles and lens space surgeries , 2003, math/0310164.

[21]  P. Ozsváth,et al.  On the Floer homology of plumbed three-manifolds , 2002, math/0203265.

[22]  Ciprian Manolescu,et al.  PERIODIC FLOER PRO-SPECTRA FROM THE SEIBERG-WITTEN EQUATIONS , 2002, math/0203243.

[23]  B. Schmidt Spin 4-manifolds and Pin(2)-equivariant homotopy theory , 2003 .

[24]  N. Saveliev Fukumoto-Furuta invariants of plumbed homology 3-spheres , 2002 .

[25]  M. Furuta,et al.  A stable cohomotopy refinement of Seiberg-Witten invariants: I , 2002, math/0204340.

[26]  M. Furuta,et al.  W-invariants and Neumann–Siebenmann invariants for Seifert homology 3-spheres , 2001 .

[27]  P. Ozsváth,et al.  Holomorphic triangles and invariants for smooth four-manifolds , 2001, math/0110169.

[28]  P. Ozsváth,et al.  Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary , 2001, math/0110170.

[29]  P. Ozsváth,et al.  Holomorphic disks and three-manifold invariants: Properties and applications , 2001, math/0105202.

[30]  Ciprian Manolescu Seiberg-Witten-Floer stable homotopy type of three-manifolds with b_1=0 , 2001, math/0104024.

[31]  P. Ozsváth,et al.  Holomorphic disks and topological invariants for closed three-manifolds , 2001, math/0101206.

[32]  M. Furuta Monopole equation and the ${\dsize\frac{11}{8}}$-conjecture , 2001 .

[33]  O. Cornea Homotopical dynamics: suspension and duality , 1999, Ergodic Theory and Dynamical Systems.

[34]  Kim A. Frøyshov Equivariant aspects of Yang–Mills Floer theory , 1999, math/9903083.

[35]  The Conley index for flows preserving generalized symmetries , 1999 .

[36]  N. Saveliev Floer homology of Brieskorn homology spheres , 1999 .

[37]  N. Saveliev FLOER HOMOLOGY AND INVARIANTS OF HOMOLOGY COBORDISM , 1998 .

[38]  K. Gȩba Degree for Gradient Equivariant Maps and Equivariant Conley Index , 1997 .

[39]  Peter S. Ozsv'ath,et al.  Seiberg--Witten Monopoles on Seifert Fibered Spaces , 1996, math/9612221.

[40]  N. Saveliev ON THE HOMOLOGY COBORDISM GROUP OF HOMOLOGY 3-SPHERES , 1996, math/9608211.

[41]  Kim A. Frøyshov The Seiberg-Witten equations and four-manifolds with boundary , 1996 .

[42]  J. Bernhard,et al.  Casson's Invariant for Oriented Homology 3-spheres: An Introduction , 1993 .

[43]  R. Stern,et al.  Instanton Homology of Seifert Fibred Homology Three Spheres , 1990 .

[44]  A. Floer,et al.  An instanton-invariant for 3-manifolds , 1988 .

[45]  A. Floer,et al.  A refinement of the Conley index and an application to the stability of hyperbolic invariant sets , 1987, Ergodic Theory and Dynamical Systems.

[46]  Jon P. May,et al.  Equivariant Stable Homotopy Theory , 1986 .

[47]  Michael H. Freedman,et al.  The topology of four-dimensional manifolds , 1982 .

[48]  J. McClure,et al.  Ordinary $RO\left( G \right)$-graded cohomology , 1981 .

[49]  J. McClure,et al.  ORDINARY i?O(G)-GRADED COHOMOLOGY , 1981 .

[50]  Olli Lehto Proceedings of the International Congress of Mathematicians : Helsinki, 1978 , 1980 .

[51]  R. Stern,et al.  Classification of simplicial triangulations of topological manifolds , 1980 .

[52]  L. Siebenmann On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-spheres , 1980 .

[53]  W. Neumann An invariant of plumbed homology spheres , 1980 .

[54]  J. W. Cannon,et al.  Shrinking cell-like decompositions of manifolds. Codimension three , 1979 .

[55]  A UNIVERSAL 5-MANIFOLD WITH RESPECT TO SIMPLICIAL TRIANGULATIONS , 1979 .

[56]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[57]  Robion Kirby,et al.  Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. , 1977 .

[58]  K. Wirthmüller EquivariantS-duality , 1975 .

[59]  V. K. Patodi,et al.  Spectral asymmetry and Riemannian Geometry. I , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[60]  K. Wirthmüller Equivariant homology and duality , 1974 .

[61]  G. E. Bredon Introduction to compact transformation groups , 1972 .

[62]  J. Eells,et al.  An invariant for certain smooth manifolds , 1962 .

[63]  E. Spanier Function Spaces and Duality , 1959 .

[64]  J. Whitehead,et al.  Duality in homotopy theory , 1955 .

[65]  Edwin E. Moise,et al.  Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .