Report 26: Reduction in mobility and COVID-19 transmission

COVID-19 (Disease); Epidemics; Infectious disease; Emerging infectious diseases; Communicable diseases

Christl A. Donnelly | Wes Hinsley | Daniel J. Laydon | Erik M. Volz | Samir Bhatt | John A. Lees | Thomas A. Mellan | Kris V Parag | Anne Cori | Neil M. Ferguson | Nicholas C. Grassly | M Pons Salort | Steven Riley | Manon Ragonnet-Cronin | Natsuko Imai | Helen Coupland | Katharina Hauck | Lilith K Whittles | Marc Baguelin | Ilaria Dorigatti | Robert Verity | Pierre Nouvellet | Lorenzo Cattarino | Oliver J Watson | S. Bhatt | N. Grassly | H. Unwin | T. Mellan | H. Coupland | C. Whittaker | K. Ainslie | M. Baguelin | A. Boonyasiri | L. Cattarino | L. Cooper | Z. C. Perez | G. Cuomo-Dannenburg | A. Dighe | A. Djaafara | I. Dorigatti | S. V. Elsland | R. FitzJohn | K. Gaythorpe | L. Geidelberg | W. Green | A. Hamlet | W. Hinsley | B. Jeffrey | E. Knock | D. Laydon | P. Nouvellet | K. Parag | R. Verity | E. Volz | C. Walters | O. Watson | X. Xi | P. Walker | C. Donnelly | S. Riley | M. Vollmer | N. Ferguson | N. Imai | S. Bhatia | A. Cori | H. Wang | N. Brazeau | J. Lees | T. Mangal | L. Whittles | K. Hauck | O. Eales | A Dighe | A Boonyasiri | Z Cucunuba Perez | G Cuomo-Dannenburg | R Fitzjohn | W Green | G Nedjati Gilani | S Van Elsland | H Wang | C Whittaker | X Xi | Patrick G T Walker | Sangeeta N. Bhatia | Kylie E. C. Ainslie | Nicholas F. Brazeau | L Cooper | A Djaafara | O Eales | F Nscimento | Katy A. M. Gaythorpe | Lily Geidelberg | A Hamlet | B Jeffrey | E Knock | Tara D. Mangal | H Unwin | M Vollmer | C Walters | M. Ragonnet-Cronin | M. Salort | G. Gilani | F. Nscimento

[1]  G. Leung,et al.  Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study , 2020, The Lancet.

[2]  S. Bhatt,et al.  A sub-national analysis of the rate of transmission of COVID-19 in Italy , 2020, medRxiv.

[3]  L. Meyers,et al.  Risk for Transportation of Coronavirus Disease from Wuhan to Other Cities in China , 2020, Emerging infectious diseases.

[4]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[5]  S. Bhatt,et al.  State-level tracking of COVID-19 in the United States , 2020, Nature Communications.

[6]  Christl A. Donnelly,et al.  Report 23: State-level tracking of COVID-19 in the United States , 2020 .

[7]  Imperial College COVID-19 Response Team,et al.  Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in European countries: technical description update , 2020, 2004.11342.

[8]  C. Fraser Estimating Individual and Household Reproduction Numbers in an Emerging Epidemic , 2007, PloS one.

[9]  Nam Joong Kim,et al.  Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea , 2018, The Korean journal of internal medicine.

[10]  Ruifu Yang,et al.  An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China , 2020, Science.

[11]  J. Lessler,et al.  Estimating the burden of SARS-CoV-2 in France , 2020, Science.

[12]  Weizhong Yang,et al.  COVID-19 control in China during mass population movements at New Year , 2020, The Lancet.

[13]  P. Teunis,et al.  Strongly Heterogeneous Transmission of COVID-19 in Mainland China: Local and Regional Variation , 2020, Frontiers in Medicine.

[14]  Cécile Viboud,et al.  Human mobility and the spatial transmission of influenza in the United States , 2017, PLoS Comput. Biol..

[15]  Nuno R. Faria,et al.  The effect of human mobility and control measures on the COVID-19 epidemic in China , 2020, Science.

[16]  Chen Shen,et al.  ข้อสรุปจากบทความ “ผลของมาตรการที่ไม่ใช่ยาในการลดอัตราการตายและความต้องการทรัพยาการทาง สาธารณสุขเนื่องจากโรคโควิด-19” โดย Neil Ferguson และคณะ Review of Ferguson et al ”Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand.” , 2020 .

[17]  S. Bhatt,et al.  Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment. , 2020, Wellcome open research.

[18]  P. Klepac,et al.  Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts , 2020, The Lancet Global Health.

[19]  C. Fraser,et al.  A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics , 2013, American journal of epidemiology.

[20]  Nuno R. Faria,et al.  Report 21: Estimating COVID-19 cases and reproduction number in Brazil , 2020, medRxiv.

[21]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[22]  Carl A. B. Pearson,et al.  The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study , 2020, The Lancet Public Health.

[23]  Report 21: Estimating COVID-19 cases and reproduction number in Brazil , 2020 .

[24]  Ahmad M. Alghraibeh,et al.  Preferred Interpersonal Distances: A Global Comparison , 2017 .

[25]  Jessica T Davis,et al.  The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak , 2020, Science.

[26]  Peng Wu,et al.  Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study , 2020, The Lancet Public Health.

[27]  Young Joon Park,et al.  Contact Transmission of COVID-19 in South Korea: Novel Investigation Techniques for Tracing Contacts , 2020, Osong public health and research perspectives.