Regular Article: On the Parameter Identification Problem in the Plane and the Polar Fractal Interpolation Functions

Fractal interpolation functions provide a new means for fitting experimental data and their graphs can be used to approximate natural scenes. We first determine the conditions that a vertical scaling factor must obey to model effectively an arbitrary function. We then introduce polar fractal interpolation functions as one fractal interpolation method of a non-affine character. Thus, this method may be suitable for a wider range of applications than that of the affine case. The interpolation takes place in polar coordinates and then with an inverse non-affine transformation a simple closed curve arises as an attractor which interpolates the data in the usual plane coordinates. Finally, we prove that this attractor has the same Hausdorff dimension as the polar one.

[1]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[2]  Eduard Gröller,et al.  Modeling and rendering of nonlinear iterated function systems , 1994, Comput. Graph..

[3]  P. Massopust Fractal Functions, Fractal Surfaces, and Wavelets , 1995 .

[4]  P. Massopust Vector—valued fractal interpolation functions and their box dimension , 1991 .

[5]  S. G. Hoggar Mathematics for computer graphics , 1993, Cambridge tracts in theoretical computer science.

[6]  Michael F. Barnsley,et al.  Fractal functions and interpolation , 1986 .

[7]  M. Barnsley,et al.  Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  T. Apostol Mathematical Analysis , 1957 .

[9]  Michael Frame,et al.  Some nonlinear iterated function systems , 1994, Comput. Graph..

[10]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[11]  Monson H. Hayes,et al.  Using iterated function systems to model discrete sequences , 1992, IEEE Trans. Signal Process..

[12]  Michael F. Barnsley,et al.  Fractals everywhere, 2nd Edition , 1993 .

[13]  Maaruf Ali,et al.  USING LINEAR FRACTAL INTERPOLATION FUNCTIONS TO COMPRESS VIDEO IMAGES , 1994 .

[14]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[15]  Michael F. Barnsley,et al.  Hidden variable fractal interpolation functions , 1989 .

[16]  E. Lutton,et al.  FRACTAL MODELING OF SPEECH SIGNALS , 1994 .