Robust evidence-based object tracking

We extend the velocity Hough transform (VHT) for tracking objects with arbitrary velocity by finding an optimal, smooth trajectory that maximises its associated energy. Optimisation is achieved by temporal dynamic programming (DP). Tracking in noise is much superior to the standard Hough transform (SHT).

[1]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[2]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Hormoz Shariat,et al.  Motion Estimation with More than Two Frames , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Mubarak Shah,et al.  Establishing motion correspondence , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Mark S. Nixon,et al.  Parameterizing Arbitrary Shapes via Fourier Descriptors for Evidence-Gathering Extraction , 1998, Comput. Vis. Image Underst..

[7]  Mark S. Nixon,et al.  Dynamic feature extraction via the velocity Hough transform , 1997, Pattern Recognit. Lett..

[8]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[9]  C. A. Murthy,et al.  Pattern Recognition Letters Pattern classification with genetic algorithms , 2003 .

[10]  Ashraf A. Kassim,et al.  A comparative study of efficient generalised Hough transform techniques , 1999, Image Vis. Comput..

[11]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..