High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data

Abstract Satellite aerosol remote sensing over urban areas is still a difficult task because of the high reflectance of the underlying surface. Many aerosol retrieval algorithms are appropriate for ‘dark’ pixels and provide aerosol products with low resolutions. In this paper, we present a new aerosol retrieval algorithm that applies the synergetic use of small satellite data and Moderate Resolution Imaging Spectroradiometer (MODIS) data. The algorithm was applied to data from the China HJ-1A/1B of the Environment and Disasters Monitoring Microsatellite Constellation Charge-Coupled Device (CCD) camera and Terra MODIS data. To downscale 500 m MODIS data, a new method based on mutual information was developed. By applying this algorithm to aerosol retrieval over Beijing City, we obtain the aerosol optical depth (AOD) with a 100 m × 100 m resolution. A comparison of our results to the ground measurement data from Aerosol Robotic Network (AERONET) sites and Huailai Remote Sensing Test Field, which are measured by CE318 automatic sun tracking photometer, shows a correlation coefficient of approximately 0.89 and a root-mean-square error (RMSE) of about 0.24. The uncertainty for AOD ( τ ) is found to be Δ τ  = ±0.05 ± 0.20 τ . The algorithm could potentially be useful for other small satellite constellation data. High-resolution AOD is very useful and powerful for urban air quality monitoring and other applications.

[1]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Yong Xue,et al.  Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS , 2005 .

[3]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[4]  J. Coakley,et al.  Effect of Ship-Stack Effluents on Cloud Reflectivity , 1987, Science.

[5]  Li Qing Environment Satellite 1 and its application in environmental monitoring , 2010 .

[6]  Y. N. Ahammed,et al.  Analysis of optical properties of atmospheric aerosols inferred from spectral AODs and Ångström wavelength exponent , 2011 .

[7]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[8]  Yong Xue,et al.  Validation and analysis of aerosol optical thickness retrieval over land , 2012 .

[9]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  R. Burnett,et al.  Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. , 2002, JAMA.

[11]  Yong Xue,et al.  Prior knowledge-supported aerosol optical depth retrieval over land surfaces at 500 m spatial resolution with MODIS data , 2012 .

[12]  Yong Xue,et al.  Operational bi-angle approach to retrieve the Earth surface albedo from AVHRR data in the visible band , 1995 .

[13]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[14]  K. I. Kondratʹev Radiation in the atmosphere , 1969 .

[15]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[16]  Judith C. Chow,et al.  Spatial and seasonal distributions of carbonaceous aerosols over China , 2007 .

[17]  Lin Sun,et al.  Retrieval of aerosol optical thickness from HJ-1A/B images using structure function method , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Qing Li,et al.  Research on Dark Dense Vegetation algorithm based on environmental satellite CCD DATA , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Yong Xue,et al.  A synergic algorithm for retrieval of aerosol optical depth over land , 2009 .

[20]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[23]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[24]  Costas A. Varotsos,et al.  Atmospheric greenhouse effect in the context of global climate change , 1995 .

[25]  Jianping Guo,et al.  Small satellite remote sensing and applications – history, current and future , 2008 .

[26]  Qinhuo Liu,et al.  Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data , 2010 .

[27]  H. Iglseder,et al.  Small satellite constellations for disaster detection and monitoring , 1995 .

[28]  Yong Xue,et al.  Aerosol optical thickness retrieval over non-Lambertian land surface with synergistic use of AATSR radiance measurements and MODIS derived Albedo Model Parameters , 2009 .

[29]  Qinhuo Liu,et al.  Photosynthetically active radiation retrieval based on HJ-1A/B satellite data , 2010 .

[30]  Costas A. Varotsos,et al.  On the altitude dependence of solar effective UV , 1999 .

[31]  Pcs Devara,et al.  Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB) , 2009 .

[32]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[33]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[34]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[35]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[36]  Jacqueline Le Moigne,et al.  Mutual information as a similarity measure for remote sensing image registration , 2001, SPIE Defense + Commercial Sensing.

[37]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[38]  Yoram J. Kaufman,et al.  Effect of Amazon smoke on cloud microphysics and albedo - analysis from satellite imagery , 1993 .

[39]  A. Kokhanovsky,et al.  Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments , 2007, Atmospheric Research.

[40]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[41]  John R. Stedman,et al.  The predicted number of air pollution related deaths in the UK during the August 2003 heatwave , 2004 .

[42]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[43]  T. L. Wolfe,et al.  An assessment of the impact of pollution on global cloud albedo , 1984 .