Sequential Paleotetraploidization shaped the carrot genome

[1]  Yuannian Jiao,et al.  Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. , 2020, Molecular plant.

[2]  Xingtan Zhang,et al.  The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication , 2019, Nature Genetics.

[3]  Ruihua Wang,et al.  Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization , 2019, BMC Plant Biology.

[4]  Xiyin Wang,et al.  Recursive Paleohexaploidization Shaped the Durian Genome , 2018, Plant Physiology.

[5]  Xiyin Wang,et al.  Two Likely Auto-Tetraploidization Events Shaped Kiwifruit Genome and Contributed to Establishment of the Actinidiaceae Family , 2018, iScience.

[6]  T. Liu,et al.  An Overlooked Paleotetraploidization in Cucurbitaceae , 2017, Molecular biology and evolution.

[7]  Xiyin Wang,et al.  Alignment of Common Wheat and Other Grass Genomes Establishes a Comparative Genomics Research Platform , 2017, Front. Plant Sci..

[8]  Xiyin Wang,et al.  Two Highly Similar Poplar Paleo-subgenomes Suggest an Autotetraploid Ancestor of Salicaceae Plants , 2017, Front. Plant Sci..

[9]  A. Paterson,et al.  Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform1[OPEN] , 2017, Plant Physiology.

[10]  Xiyin Wang,et al.  Comparative Genomics Analysis of Rice and Pineapple Contributes to Understand the Chromosome Number Reduction and Genomic Changes in Grasses , 2016, Front. Genet..

[11]  Walter Sanseverino,et al.  A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution , 2016, Nature Genetics.

[12]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[13]  Haibao Tang,et al.  Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. , 2016, The New phytologist.

[14]  D. Soltis,et al.  Polyploidy and genome evolution in plants. , 2015, Current opinion in genetics & development.

[15]  Michael S. Barker,et al.  Early genome duplications in conifers and other seed plants , 2015, Science Advances.

[16]  S. Magallón,et al.  A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.

[17]  A. Paterson,et al.  Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events. , 2015, Molecular plant.

[18]  A. Paterson,et al.  Telomere-centric genome repatterning determines recurring chromosome number reductions during the evolution of eukaryotes. , 2015, The New phytologist.

[19]  Jayarama,et al.  The coffee genome provides insight into the convergent evolution of caffeine biosynthesis , 2014, Science.

[20]  J. Batley,et al.  A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome , 2014, Science.

[21]  Pamela S Soltis,et al.  The polyploidy revolution then…and now: Stebbins revisited. , 2014, American journal of botany.

[22]  Guojun Yang,et al.  Draft genome sequence of the mulberry tree Morus notabilis , 2013, Nature Communications.

[23]  Adi Doron-Faigenboim,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Repeated Polyploidization of Gossypium Genomes and the Evolution of Spinnable Cotton Fibres , 2022 .

[24]  Sebastian Proost,et al.  Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. , 2012, Molecular biology and evolution.

[25]  Yeting Zhang,et al.  A genome triplication associated with early diversification of the core eudicots , 2012, Genome Biology.

[26]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[27]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[28]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[29]  Y. Peer A mystery unveiled , 2011, Genome Biology.

[30]  Claude W. dePamphilis,et al.  Ancestral polyploidy in seed plants and angiosperms , 2011, Nature.

[31]  James C. Schnable,et al.  Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss , 2011, Proceedings of the National Academy of Sciences.

[32]  D. Soltis,et al.  Origin and Early Evolution of Angiosperms , 2008, Annals of the New York Academy of Sciences.

[33]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[34]  Zhe Li,et al.  Statistical inference of chromosomal homology based on gene colinearity and applications to Arabidopsis and rice , 2006, BMC Bioinformatics.

[35]  Olivier Gascuel,et al.  PHYML Online: A Web Server for Fast Maximum Likelihood-Based Phylogenetic Inference , 2018 .

[36]  J. Raes,et al.  Modeling gene and genome duplications in eukaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Klaas Vandepoele,et al.  Ancient duplication of cereal genomes. , 2005, The New phytologist.

[38]  Jingchu Luo,et al.  Duplication and DNA segmental loss in the rice genome: implications for diploidization. , 2005, The New phytologist.

[39]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[40]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  P. Fraser,et al.  The biosynthesis and nutritional uses of carotenoids. , 2004, Progress in lipid research.

[42]  Brad A. Chapman,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2003, Nature.

[43]  M. Feldman,et al.  Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. , 2002, Genetics.

[44]  P. Simon,et al.  Carrots and Related Vegetable Umbelliferae , 1999 .

[45]  R Hiller,et al.  Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. , 1994, JAMA.

[46]  Lawrence A. Yannuzzi,et al.  Dietary Carotenoids, Vitamins A, C, and E, and Advanced Age-Related Macular Degeneration , 1994 .

[47]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[48]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[49]  Yasuko Takahashi,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2022 .