In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane

[1]  A. West,et al.  Electrical Properties of Stoichiometric BiFeO3 Prepared by Mechanosynthesis with Either Conventional or Spark Plasma Sintering , 2013 .

[2]  J. P. Holgado,et al.  LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase , 2012 .

[3]  J. P. Holgado,et al.  In Situ XAS Study of Synergic Effects on Ni–Co/ZrO2 Methane Reforming Catalysts , 2012 .

[4]  J. P. Holgado,et al.  Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane , 2010 .

[5]  María Martha Barroso-Quiroga,et al.  Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane , 2010 .

[6]  M. Aramendía,et al.  A study on the potential application of natural phosphate in photocatalytic processes. , 2010, Journal of colloid and interface science.

[7]  M. Salmeron,et al.  In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: hydrogen-induced burial and dig out of metallic nickel. , 2010, Chemical communications.

[8]  J. P. Holgado,et al.  Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts , 2010 .

[9]  Bingsi Liu,et al.  Syngas Production via CO2 Reforming of Methane over Sm2O3−La2O3-Supported Ni Catalyst , 2009 .

[10]  J. P. Holgado,et al.  Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system , 2008 .

[11]  J. Assaf,et al.  Catalytic evaluation of perovskite-type oxide LaNi1−xRuxO3 in methane dry reforming , 2008 .

[12]  J. Mayoral,et al.  Phosphates: New Generation of Liquid-Phase Heterogeneous Catalysts in Organic Chemistry , 2008 .

[13]  M. Kacimi,et al.  Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite , 2007 .

[14]  S. Sebti,et al.  Catalysis by phosphates: A simple and efficient procedure for transesterification reaction , 2006 .

[15]  F. Mondragón,et al.  CO2 reforming of methane over LaNiO3 as precursor material , 2005 .

[16]  J. P. Espinós,et al.  An in situ XAS study of Cu/ZrO2 catalysts under de-NOx reaction conditions , 2005 .

[17]  B. Ravel A practical introduction to multiple scattering theory , 2005 .

[18]  E. Manova,et al.  Mechanochemically synthesized nano-dimensional iron–cobalt spinel oxides as catalysts for methanol decomposition , 2004 .

[19]  E. Iglesia,et al.  Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts , 2004 .

[20]  S. Oyama,et al.  The Effect of Pressure in Membrane Reactors: Trade-Off in Permeability and Equilibrium Conversion in the Catalytic Reforming of CH4 with CO2 at High Pressure , 2004 .

[21]  Y. Matsumura,et al.  Steam reforming of methane over nickel catalysts at low reaction temperature , 2004 .

[22]  K. Takehira Highly Dispersed and Stable Supported Metal Catalysts Prepared by Solid Phase Crystallization Method , 2002 .

[23]  Young-Sam Oh,et al.  Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content , 2002 .

[24]  R. Nuzzo,et al.  A view from the inside: Complexity in the atomic scale ordering of supported metal nanoparticles , 2001 .

[25]  D. Kellerman,et al.  Synthesis and characterization of new strontium iron (II) phosphates, SrFe2 (PO4)(2) and Sr9Fe1.5 (PO4)(7) , 2001 .

[26]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[27]  J. Armor,et al.  The multiple roles for catalysis in the production of H2 , 1999 .

[28]  B. Lengeler Lattice site location of hydrogen by use of extended X-ray absorption fine structure , 1984 .

[29]  M. Wietschel,et al.  The future of hydrogen : opportunities and challenges , 2009 .

[30]  S. Nam,et al.  Nickel–calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: characterization and activation , 2004 .

[31]  S. Hamakawa,et al.  Sustainable Ni/BaTiO3 catalysts for partial oxidation of methane to synthesis gas , 1997 .

[32]  A. Caballero,et al.  The selection of experimental conditions in temperature-programmed reduction experiments , 1988 .