One-dimensional titanium dioxide nanomaterials: nanotubes.

In the present review we try to give a comprehensive and most up to date view to the field, with an emphasis on the currently most investigated anodic TiO2 nanotube arrays. We will first give an overview of different synthesis approaches to produce TiO2 nanotubes and TiO2 nanotube arrays, and then deal with physical and chemical properties of TiO2 nanotubes and techniques to modify them. Finally, we will provide an overview of the most explored and prospective applications of nanotubular TiO2.

[1]  Jijiang Fu,et al.  Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: in vitro and in vivo studies. , 2014, Journal of biomedical materials research. Part A.

[2]  P. Schmuki,et al.  Anodic TiO2 nanotube layers: Why does self-organized growth occur—A mini review , 2014, 1610.03643.

[3]  A. Mazare,et al.  Calcination condition effect on microstructure, electrochemical and hemolytic behavior of amorphous nanotubes on Ti6Al7Nb alloy , 2014 .

[4]  S. Grigorescu,et al.  The two step nanotube formation on TiZr as scaffolds for cell growth. , 2014, Bioelectrochemistry.

[5]  P. Schmuki,et al.  NH₃ treatment of TiO₂ nanotubes: from N-doping to semimetallic conductivity. , 2014, Chemical communications.

[6]  M. Hartmann,et al.  Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. , 2014, Nano letters.

[7]  Lingzhou Zhao,et al.  Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays , 2014 .

[8]  Sheng-wei Lee,et al.  Diameter selective behavior of human nasal epithelial cell on Ag-coated TiO2 nanotubes , 2014 .

[9]  Jae Joon Kim,et al.  Controlled fabrication of porous double-walled TiO2 nanotubes via ultraviolet-assisted anodization. , 2014, Nanoscale.

[10]  P. Schmuki,et al.  Conductivity of anodic TiO2 nanotubes: Influence of annealing conditions , 2014 .

[11]  C. Yuan,et al.  Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithium-ion intercalation performance , 2014 .

[12]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[13]  Sepideh Minagar,et al.  Fabrication and characterization of TiO2-ZrO2-ZrTiO4 nanotubes on TiZr alloy manufactured via anodization. , 2014, Journal of materials chemistry. B.

[14]  B. Pan,et al.  Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts , 2014 .

[15]  P. Schmuki,et al.  Templating Using Self‐Aligned TiO2 Nanotube Stumps: Highly Ordered Metal and Polymer Bumped Arrays , 2014 .

[16]  Haitao Huang,et al.  High Temperature Crystallization of Free‐Standing Anatase TiO2 Nanotube Membranes for High Efficiency Dye‐Sensitized Solar Cells , 2013 .

[17]  Quan Xu,et al.  Electrodeposited hydroxyapatite coatings on the TiO2 nanotube in static magnetic field , 2013 .

[18]  P. Schmuki,et al.  Anodic TiO2 nanotubes: double walled vs. single walled. , 2013, Faraday discussions.

[19]  Go-Eun Kim,et al.  Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible. , 2013, Biomaterials.

[20]  Yibing Xie,et al.  Electrochemical capacitance performance of titanium nitride nanoarray , 2013 .

[21]  P. Schmuki,et al.  Reliable metal deposition into TiO(2) nanotubes for leakage-free interdigitated electrode structures and use as a memristive electrode. , 2013, Angewandte Chemie.

[22]  Hui Wu,et al.  Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment , 2013, Nanotechnology.

[23]  Jing Guo,et al.  Nickel hydroxide nanoparticle activated semi-metallic TiO(2) nanotube arrays for non-enzymatic glucose sensing. , 2013, Chemistry.

[24]  P. Schmuki,et al.  Intrinsic Au Decoration of Growing TiO2 Nanotubes and Formation of a High‐Efficiency Photocatalyst for H2 Production , 2013, Advanced materials.

[25]  Giorgio Sberveglieri,et al.  TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties , 2013, Sensors.

[26]  M. Stiller,et al.  Transport properties of single TiO2 nanotubes , 2013 .

[27]  C. Yuan,et al.  Enhancing the performance of free-standing TiO2 nanotube arrays based dye-sensitized solar cells via ultraprecise control of the nanotube wall thickness , 2013 .

[28]  Kourosh Kalantar-Zadeh,et al.  Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3. , 2013, Nanoscale.

[29]  S. Thennarasu,et al.  Hydrothermal temperature as a morphological control factor: Preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons , 2013 .

[30]  Xiao-yan Wang,et al.  On seeding of the second layer in growth of double-layered TiO2 nanotube arrays , 2013 .

[31]  Tatsuya Kikuchi,et al.  Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing , 2013, Scientific Reports.

[32]  X. Fang,et al.  Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance , 2013, Nanoscale Research Letters.

[33]  M. Welland,et al.  The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells† , 2013 .

[34]  Chang Woo Kim,et al.  Fabrication of SrTiO3–TiO2 heterojunction photoanode with enlarged pore diameter for dye-sensitized solar cells , 2013 .

[35]  Slamet,et al.  Photocatalytic hydrogen production from glycerol–water mixture over Pt‐N‐TiO2 nanotube photocatalyst , 2013 .

[36]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[37]  P. Schmuki,et al.  Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps , 2013 .

[38]  P. Schmuki,et al.  Highly ordered TiO2 nanotube-stumps with memristive response , 2013 .

[39]  James A. Sullivan,et al.  Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: Photo-electrochemical and photocatalytic properties , 2013 .

[40]  Peng Wang,et al.  Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. , 2013, Physical chemistry chemical physics : PCCP.

[41]  Wei Zhou,et al.  Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature. , 2013, Nanoscale.

[42]  R. Ahuja,et al.  TiO2-based gas sensor: a possible application to SO2. , 2013, ACS applied materials & interfaces.

[43]  D. Xiao,et al.  Electrophoresis deposition of Ag nanoparticles on TiO₂ nanotube arrays electrode for hydrogen peroxide sensing. , 2013, Talanta.

[44]  Haitao Huang,et al.  A One‐Step and Binder‐Free Method to Fabricate Hierarchical Nickel‐Based Supercapacitor Electrodes with Excellent Performance , 2013 .

[45]  R. Boughton,et al.  In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation , 2013, International journal of nanomedicine.

[46]  H. Fritze,et al.  Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes , 2013 .

[47]  D. J. Kim,et al.  Vertically aligned anatase TiO2 nanotubes on transparent conducting substrates using polycarbonate membranes , 2013 .

[48]  P. Schmuki,et al.  Fast electron transport and high surface area: potential application of porous anatase single crystals in solar cells. , 2013, Angewandte Chemie.

[49]  N. Keller,et al.  Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes , 2013 .

[50]  A. Ghorbel,et al.  Effect of Na content and thermal treatment of titanate nanotubes on the photocatalytic degradation of formic acid , 2013 .

[51]  P. Schmuki,et al.  Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system. , 2013, Angewandte Chemie.

[52]  D. Manfredi,et al.  Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved durability , 2013 .

[53]  Thomas J Webster,et al.  Effects of different sterilization techniques and varying anodized TiO₂ nanotube dimensions on bacteria growth. , 2013, Journal of biomedical materials research. Part B, Applied biomaterials.

[54]  M. Misra,et al.  Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications , 2013, Materials.

[55]  Qiang Liu,et al.  Hydrogen Sensing with Ni-Doped TiO2 Nanotubes , 2013, Sensors.

[56]  F. Gobal,et al.  Fabrication of nanoporous nickel oxide by de-zincification of Zn–Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors , 2013 .

[57]  K. Lee,et al.  Bottom sealing and photoelectrochemical properties of different types of anodic TiO , 2013 .

[58]  Chang Soo Kim,et al.  In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices , 2013, Nanotechnology.

[59]  K. Edström,et al.  High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries , 2013 .

[60]  D. Guldi,et al.  Excited state properties of anodic TiO2 nanotubes , 2013 .

[61]  Yanjun Xin,et al.  Controlled anodic growth of TiO2 nanobelts and assessment of photoelectrochemical and photocatalytic properties , 2013 .

[62]  P. Schmuki,et al.  TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications , 2013 .

[63]  P. Bruce,et al.  Nanostructured TiO2(B): the effect of size and shape on anode properties for Li-ion batteries , 2013 .

[64]  Ying Wang,et al.  Electrodeposition of Ag nanoparticles onto bamboo-type TiO2 nanotube arrays to improve their lithium-ion intercalation performance , 2013, Ionics.

[65]  N. Vaenas,et al.  Annealing effects on self-assembled TiO2 nanotubes and their behavior as photoelectrodes in dye-sensitized solar cells , 2013 .

[66]  N. A. Kyeremateng,et al.  Sulfidated TiO2 nanotubes: a potential 3D cathode material for Li-ion micro batteries. , 2013, Chemical communications.

[67]  Jinhua Ye,et al.  Reduced TiO2 nanotube arrays for photoelectrochemical water splitting , 2013 .

[68]  P. Schmuki,et al.  Signal Amplification Strategy Based on TiO2-Nanotube Layers and Nanobeads Carrying Quantum Dots for Electrochemiluminescent Immunosensors , 2013, ChemistryOpen.

[69]  Jeng‐Kuei Chang,et al.  Diameter-sensitive biocompatibility of anodic TiO2 nanotubes treated with supercritical CO2 fluid , 2013, Nanoscale Research Letters.

[70]  J. Park,et al.  Engineering biocompatible implant surfaces , 2013 .

[71]  Tetsuya Kida,et al.  A Micro Gas Sensor Using TiO2 Nanotubes to Detect Volatile Organic Compounds , 2013 .

[72]  N. Zhang,et al.  Co3O4-coated TiO2 nanotube composites synthesized through photo-deposition strategy with enhanced performance for lithium-ion batteries , 2013 .

[73]  Lingzhou Zhao,et al.  Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. , 2013, Biomaterials.

[74]  S. Grigorescu,et al.  Various sized nanotubes on TiZr for antibacterial surfaces , 2013 .

[75]  P. Glans,et al.  Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation , 2013, Scientific Reports.

[76]  Xiaolin Liu,et al.  Synthesis of long TiO2 nanotube arrays with a small diameter for efficient dye-sensitized solar cells , 2013 .

[77]  Qin Zhong,et al.  Adsorption of carbon dioxide on amine-modified TiO2 nanotubes. , 2013, Journal of environmental sciences.

[78]  Se‐Hun Kwon,et al.  Highly ordered freestanding titanium oxide nanotube arrays using Si-containing block copolymer lithography and atomic layer deposition , 2013, Nanotechnology.

[79]  Guohua Liu,et al.  Small diameter TiO2 nanotubes with enhanced photoresponsivity , 2013 .

[80]  Kang Wang,et al.  Synthesis of Bi‐doped TiO2 Nanotubes and Enhanced Photocatalytic Activity for Hydrogen Evolution from Glycerol Solution , 2013 .

[81]  P. Schmuki,et al.  Influence of anodization parameters on the expansion factor of TiO2 nanotubes , 2013 .

[82]  P. Schmuki,et al.  High-aspect-ratio dye-sensitized solar cells based on robust, fast-growing TiO2 nanotubes. , 2013, Chemistry.

[83]  F. Gobal,et al.  Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor , 2013 .

[84]  P. Schmuki,et al.  Formation of 'single walled' TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. , 2013, Chemical communications.

[85]  P. Schmuki,et al.  Anodic formation of self-organized cobalt oxide nanoporous layers. , 2013, Angewandte Chemie.

[86]  K. Popat,et al.  Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. , 2013, Biomaterials science.

[87]  A. Iglič,et al.  Adhesion of osteoblasts to a vertically aligned TiO2 nanotube surface. , 2013, Mini reviews in medicinal chemistry.

[88]  D. Manfredi,et al.  Charge transport improvement employing TiO2 nanotube arrays as front-side illuminated dye-sensitized solar cell photoanodes. , 2013, Physical chemistry chemical physics : PCCP.

[89]  P. Schmuki,et al.  Current dependent formation of PEDOT inverse nanotube arrays , 2013 .

[90]  P. Schmuki,et al.  Ordered "superlattice" TiO2/Nb2O5 nanotube arrays with improved ion insertion stability. , 2013, Chemical communications.

[91]  N. A. Kyeremateng,et al.  The electrochemical behaviour of TiO2 nanotubes with Co3O4 or NiO submicron particles: Composite anode materials for Li-ion micro batteries , 2013 .

[92]  Jin Young Kim,et al.  Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics , 2013 .

[93]  Zhaohui Li,et al.  p-Type hydrogen sensing with Al- and V-doped TiO2 nanostructures , 2013, Nanoscale Research Letters.

[94]  P. Schmuki,et al.  Embedded Palladium Activation as a Facile Method for TiO2-Nanotube Nanoparticle Decoration: Cu2O-Induced Visible-Light Photoactivity , 2013, ChemistryOpen.

[95]  P. Schmuki,et al.  Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers , 2012 .

[96]  P. Schmuki,et al.  Advanced geometries of PEDOT formed in titania nanotubes. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[97]  Akira Fujishima,et al.  Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification , 2012 .

[98]  P. Vijayan,et al.  Effect of calcinations on electrical properties of TiO2 nanotubes , 2012 .

[99]  L. Forr'o,et al.  Synthesis of Homogeneous Manganese-Doped Titanium Oxide Nanotubes from Titanate Precursors , 2012, 1211.3459.

[100]  P. Schmuki,et al.  Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[101]  Li-ping Zhu,et al.  Characterization, properties and catalytic application of TiO2 nanotubes prepared by ultrasonic-assisted sol-hydrothermal method , 2012 .

[102]  P. Schmuki,et al.  Water annealing and other low temperature treatments of anodic TiO2 nanotubes: A comparison of properties and efficiencies in dye sensitized solar cells and for water splitting , 2012 .

[103]  P. Schmuki,et al.  Ta doping for an enhanced efficiency of TiO2 nanotube based dye-sensitized solar cells , 2012 .

[104]  K. Neoh,et al.  Immobilization strategy for optimizing VEGF's concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces. , 2012, Biomaterials.

[105]  Ning Liu,et al.  A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. , 2012, Small.

[106]  E. Vasile,et al.  Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. , 2012, Bioelectrochemistry.

[107]  R. Cui,et al.  Preparation of TiO2 Nanotubes by Ionic Liquid Assisted Anodic Oxidation Method , 2012 .

[108]  Sang Min Lee,et al.  Enhanced ethanol sensing properties of TiO2 nanotube sensors , 2012 .

[109]  Y. Aoki,et al.  Photo-induced properties of non-annealed anatase TiO2 mesoporous film prepared by anodizing in the hot phosphate/glycerol electrolyte , 2012 .

[110]  E. Moyen,et al.  A Novel Self‐Ordered Sub‐10 nm Nanopore Template for Nanotechnology , 2012, Advanced materials.

[111]  P. Schmuki,et al.  Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells. , 2012, Chemistry.

[112]  Sean Li,et al.  Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics , 2012 .

[113]  Yang Li,et al.  An excellent room-temperature hydrogen sensor based on titania nanotube-arrays , 2012 .

[114]  J. Planell,et al.  Adsorption of Fibronectin, Fibrinogen, and Albumin on TiO2: Time-Resolved Kinetics, Structural Changes, and Competition Study , 2012, Biointerphases.

[115]  P. Schmuki,et al.  Anodic TiO2 nanotubes: Influence of top morphology on their photocatalytic performance , 2012 .

[116]  S. Ahmadi,et al.  The effect of highly ordered titania nanotube structures on hydrogen gas detection , 2012 .

[117]  Sepideh Minagar,et al.  A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. , 2012, Acta biomaterialia.

[118]  P. Schmuki,et al.  Front side illuminated dye-sensitized solar cells using anodic TiO2 mesoporous layers grown on FTO-glass , 2012 .

[119]  P. M. Perillo,et al.  The gas sensing properties at room temperature of TiO2 nanotubes by anodization , 2012 .

[120]  Zhaoyang Fan,et al.  Comparing graphene-TiO₂ nanowire and graphene-TiO₂ nanoparticle composite photocatalysts. , 2012, ACS applied materials & interfaces.

[121]  M. Wohlfahrt‐Mehrens,et al.  High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. , 2012, Chemical Society reviews.

[122]  Bilge Saruhan,et al.  Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring , 2012 .

[123]  P. Schmuki,et al.  Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes. , 2012, Journal of the American Chemical Society.

[124]  S. Bauer,et al.  ECM spreading behaviour on micropatterned TiO2 nanotube surfaces. , 2012, Acta biomaterialia.

[125]  P. Schmuki,et al.  Some critical factors for photocatalysis on self-organized TiO2 nanotubes , 2012, Journal of Solid State Electrochemistry.

[126]  P. Schmuki,et al.  Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs , 2012 .

[127]  Sheikh A. Akbar,et al.  Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review , 2012, Sensors.

[128]  Marc Madou,et al.  A new approach to gas sensing with nanotechnology , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[129]  Jun Yeong Seok,et al.  Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell , 2012, Nanotechnology.

[130]  Sanjaya D. Perera,et al.  Hydrothermal synthesis of graphene-TiO 2 nanotube composites with enhanced photocatalytic activity , 2012 .

[131]  Jinsong Liu,et al.  Sol-Gel-Derived Hydroxyapatite-Carbon Nanotube/Titania Coatings on Titanium Substrates , 2012, International journal of molecular sciences.

[132]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[133]  P. Schmuki,et al.  Anodically formed transparent mesoporous TiO2 electrodes for high electrochromic contrast , 2012 .

[134]  P. Schmuki,et al.  Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. , 2012, Chemical communications.

[135]  P. Schmuki,et al.  Ru‐doped TiO2 nanotubes: Improved performance in dye‐sensitized solar cells , 2012 .

[136]  P. Schmuki,et al.  Flame annealing effects on self-organized TiO2 nanotubes , 2012 .

[137]  Xiaoxing Zhang,et al.  TiO2 Nanotube Array Sensor for Detecting the SF6 Decomposition Product SO2 , 2012, Sensors.

[138]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[139]  K. Schlegel,et al.  The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. , 2012, Clinical oral implants research.

[140]  S. Adams,et al.  A reliable TiO2 nanotube membrane transfer method and its application in photovoltaic devices , 2012 .

[141]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[142]  L. Kavan Electrochemistry of titanium dioxide: some aspects and highlights. , 2012, Chemical record.

[143]  N. Boukos,et al.  Sensitizer activated solar cells based on self-organized TiO2 nanotubes , 2012 .

[144]  P. Schmuki,et al.  Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells , 2012 .

[145]  F. Pan,et al.  Facile fabrication of a dual hierarchical TiO2 nanostructure , 2012 .

[146]  J. Greer,et al.  Ultrahigh sensitivity assays for human cardiac troponin I using TiO2 nanotube arrays. , 2012, Lab on a chip.

[147]  Bo Chen,et al.  Hierarchically branched titania nanotubes with tailored diameters and branch numbers. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[148]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .

[149]  Christopher S. Johnson,et al.  Self-Improving Anode for Lithium-Ion Batteries Based on Amorphous to Cubic Phase Transition in TiO2 Nanotubes , 2012 .

[150]  Jiwei Zhang,et al.  Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries , 2012 .

[151]  D. Ding,et al.  Wide-range hydrogen sensing with Nb-doped TiO2 nanotubes , 2012, Nanotechnology.

[152]  V. Russo,et al.  TiO2 Nanotubes: Interdependence of Substrate Grain Orientation and Growth Characteristics , 2012 .

[153]  S. Bauer,et al.  Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. , 2012, Small.

[154]  Jensen Li,et al.  Direct and Seamless Coupling of TiO2 Nanotube Photonic Crystal to Dye‐Sensitized Solar Cell: A Single‐Step Approach , 2011, Advanced materials.

[155]  Seong-Hyeon Hong,et al.  A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method , 2011 .

[156]  K. Gulati,et al.  Controlling Drug Release from Titania Nanotube Arrays Using Polymer Nanocarriers and Biopolymer Coating , 2011 .

[157]  Daniel H. Chen,et al.  Phosphorus-doped titania nanotubes with enhanced photocatalytic activity , 2011 .

[158]  Ronghua Liu,et al.  Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application , 2011 .

[159]  Ning Liu,et al.  Photoelectrochemical and photocatalytic activity of tungsten doped TiO2 nanotube layers in the near visible region , 2011 .

[160]  J. S. Lee,et al.  Fabrication of nanoporous MTiO3 (M = Pb, Ba, Sr) perovskite array films with unprecedented high structural regularity , 2011 .

[161]  Giorgio Sberveglieri,et al.  TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates , 2011 .

[162]  L. Ye,et al.  Enhanced charge storage by the electrocatalytic effect of anodic TiO₂ nanotubes. , 2011, Nanoscale.

[163]  P. Schmuki,et al.  The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls , 2011 .

[164]  P. Schmuki,et al.  Improved water-splitting behaviour of flame annealed TiO2 nanotubes , 2011 .

[165]  P. Schmuki,et al.  Electrochromic properties of anodically grown mixed V2O5–TiO2 nanotubes , 2011 .

[166]  K. Jordan,et al.  CO2 adsorption on TiO2(101) anatase: a dispersion-corrected density functional theory study. , 2011, The Journal of chemical physics.

[167]  P. Schmuki,et al.  Increased photocurrent response in Nb-doped TiO2 nanotubes , 2011 .

[168]  A. Fujishima,et al.  Fabrication and Photocatalytic Properties of TiO2 Nanotube Arrays Modified with Phosphate , 2011 .

[169]  P. Schmuki,et al.  Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. , 2011, Angewandte Chemie.

[170]  H. Jakobsen,et al.  A voltage-dependent investigation on detachment process for free-standing crystalline TiO2 nanotube membranes , 2011 .

[171]  Bo Chen,et al.  Influence of patterned concave depth and surface curvature on anodization of titania nanotubes and alumina nanopores. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[172]  P. Schmuki,et al.  Visible-light-induced photocatalysis using self-organized TiO2 nanotubes decorated with AgBr deposits , 2011 .

[173]  S. Bauer,et al.  Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[174]  U. van Rienen,et al.  Adhesion of osteoblasts to a nanorough titanium implant surface , 2011, International journal of nanomedicine.

[175]  Bo Chen,et al.  Highly ordered titania nanotube arrays with square, triangular, and sunflower structures. , 2011, Chemical communications.

[176]  E. Diau,et al.  Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells , 2011 .

[177]  Xiaoming Huang,et al.  Highly efficient fibrous dye-sensitized solar cells based on TiO2 nanotube arrays , 2011, Nanotechnology.

[178]  Motohiro Uo,et al.  Titania nanotubes supported gelatin stabilized gold nanoparticles for medical implants , 2011 .

[179]  P. Schmuki,et al.  Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. , 2011, Nanoscale.

[180]  Sungho Jin,et al.  Soft tissue response to titanium dioxide nanotube modified implants. , 2011, Acta biomaterialia.

[181]  Hongwei Ni,et al.  Antibacterial nano-structured titania coating incorporated with silver nanoparticles. , 2011, Biomaterials.

[182]  Sheikh A. Akbar,et al.  A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays , 2011 .

[183]  P. Schmuki,et al.  Morphological instability leading to formation of porous anodic oxide films. , 2011, Nature materials.

[184]  K. Domen,et al.  Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. , 2011, Nano letters.

[185]  Thomas J Webster,et al.  Diameter of titanium nanotubes influences anti-bacterial efficacy , 2011, Nanotechnology.

[186]  P. Schmuki,et al.  From anodic TiO2 nanotubes to hexagonally ordered TiO2 nanocolumns , 2011 .

[187]  D. Galipeau,et al.  TiO2 nanotube membranes on transparent conducting glass for high efficiency dye-sensitized solar cells , 2011, Nanotechnology.

[188]  H. Teng,et al.  Electron transport patterns in TiO2 nanotube arrays based dye-sensitized solar cells under frontside and backside illuminations , 2011 .

[189]  Sungho Jin,et al.  Macrophage Inflammatory Response to TiO 2 Nanotube Surfaces , 2011 .

[190]  Deyan Luan,et al.  α-Fe2O3 nanotubes with superior lithium storage capability. , 2011, Chemical communications.

[191]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[192]  P. Schmuki,et al.  Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. , 2011, Chemical communications.

[193]  Zhong Lin Wang,et al.  Crystalline ZnO thin film by hydrothermal growth. , 2011, Chemical communications.

[194]  Bo Chen,et al.  Effects of titania nanotube distance and arrangement during focused ion beam guided anodization , 2011 .

[195]  X. W. Sun,et al.  A novel parallel configuration of dye-sensitized solar cells with double-sided anodic nanotube arrays , 2011 .

[196]  S. Bauer,et al.  Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization , 2011 .

[197]  P. Schmuki,et al.  Highly ordered nanoporous Ta2O5 formed by anodization of Ta at high temperatures in a glycerol/phosphate electrolyte , 2011 .

[198]  Xiao-yan Wang,et al.  A Two-step anodization to grow high-aspect-ratio TiO2 nanotubes , 2011 .

[199]  P. Schmuki,et al.  Protein denaturation detected by time-of-flight secondary ion mass spectrometry. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[200]  X. Xia,et al.  Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles , 2011 .

[201]  Jong Hyeok Park,et al.  Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. , 2011, ACS nano.

[202]  Y. Leng,et al.  Hexagonal hydroxyapatite formation on TiO2 nanotubes under urea modulation , 2011 .

[203]  R. Waser,et al.  TiO2—a prototypical memristive material , 2011, Nanotechnology.

[204]  P. Schmuki,et al.  Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte. , 2011, Chemical communications.

[205]  Z. Jiao,et al.  The gas sensing properties of TiO2 nanotubes synthesized by hydrothermal method , 2011 .

[206]  A. Manivannan,et al.  CO2 photoreduction in the liquid phase over Pd-supported on TiO2 nanotube and bismuth titanate photocatalysts , 2011 .

[207]  B. Park,et al.  Memristor Behaviors of Highly Oriented Anatase TiO2 Film Sandwiched between Top Pt and Bottom SrRuO3 Electrodes , 2011 .

[208]  D. Weibel,et al.  Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. , 2011, ACS applied materials & interfaces.

[209]  B. Fabry,et al.  Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite. , 2011, Acta biomaterialia.

[210]  P. Schmuki,et al.  Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting. , 2011, Journal of the American Chemical Society.

[211]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[212]  S. Bauer,et al.  Anodic TiO₂ nanotube layers electrochemically filled with MoO₃ and their antimicrobial properties. , 2011, Biointerphases.

[213]  Huakun Liu,et al.  Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies , 2011 .

[214]  Min Lai,et al.  Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. , 2011, Biomacromolecules.

[215]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[216]  M. Salari,et al.  A highly ordered titania nanotube array as a supercapacitor electrode. , 2011, Physical chemistry chemical physics : PCCP.

[217]  M. Kang,et al.  Dye-sensitized solar cells with TiO2 nano-particles on TiO2 nano-tube-grown Ti substrates , 2011 .

[218]  D. He,et al.  Nanostructured NiO electrode for high rate Li-ion batteries , 2011 .

[219]  Dongdong Li,et al.  Flexible Symmetric Supercapacitors Based on TiO$_2$ and Carbon Nanotubes , 2011, IEEE Transactions on Nanotechnology.

[220]  P. Schmuki,et al.  Fast formation of aligned high-aspect ratio TiO2 nanotube bundles that lead to increased open circuit voltage when used in dye sensitized solar cells , 2011 .

[221]  Huijuan Liu,et al.  Photoelectrocatalytic degradation of organic contaminants at Bi2O3/TiO2 nanotube array electrode , 2011 .

[222]  M. Hon,et al.  The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery , 2011 .

[223]  Chengbin Liu,et al.  Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays , 2011 .

[224]  P. Schmuki,et al.  Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation , 2011 .

[225]  J. Owrutsky,et al.  Vibrational circular-dichroism spectroscopy of homologous cyclic peptides designed to fold into β helices of opposite chirality. , 2011, Biointerphases.

[226]  Q. Pang,et al.  Dye sensitized solar cells using freestanding TiO2 nanotube arrays on FTO substrate as photoanode , 2011 .

[227]  Leigang Xue,et al.  Design and synthesis of Cu6Sn5-coated TiO2 nanotube arrays as anode material for lithium ion batteries , 2011 .

[228]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[229]  Jing Sun,et al.  Growth of Various TiO2 Nanostructures for Dye-Sensitized Solar Cells , 2011 .

[230]  Guoguang Liu,et al.  Gd3+, N-codoped trititanate nanotubes: Preparation, characterization and photocatalytic activity , 2011 .

[231]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[232]  H. Xing,et al.  Unique fusiform alumina nanotubes fabricated by combined anodization. , 2011, Chemical communications.

[233]  P. Schmuki,et al.  Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. , 2011, Chemical communications.

[234]  J. Yang,et al.  Metal/TiO2 interfaces for memristive switches , 2011 .

[235]  Bo Chen,et al.  Novel patterns by focused ion beam guided anodization. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[236]  Kai Wu,et al.  A cylindrical core-shell-like TiO2 nanotube array anode for flexible fiber-type dye-sensitized solar cells , 2011, Nanoscale research letters.

[237]  Hongbing Yu,et al.  Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film. , 2010, Journal of hazardous materials.

[238]  Lifeng Liu,et al.  Continuous Fabrication of Free-Standing TiO2 Nanotube Array Membranes with Controllable Morphology for Depositing Interdigitated Heterojunctions , 2010 .

[239]  P. Schmuki,et al.  Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization , 2010 .

[240]  B. Smarsly,et al.  Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion , 2010 .

[241]  G. R. Li,et al.  One-dimensional hierarchical titania for fast reaction kinetics of photoanode materials of dye-sensitized solar cells , 2010 .

[242]  N. Dimitrijević,et al.  The Effects of Pt Doping on the Structure and Visible Light Photoactivity of Titania Nanotubes , 2010 .

[243]  P. Schmuki,et al.  Formation of Self‐Organized Superlattice Nanotube Arrays – Embedding Heterojunctions into Nanotube Walls , 2010, Advanced materials.

[244]  Damian Kowalski,et al.  Polypyrrole self-organized nanopore arrays formed by controlled electropolymerization in TiO2 nanotube template. , 2010, Chemical communications.

[245]  Joan Daniel Prades,et al.  On the photoconduction properties of low resistivity TiO2 nanotubes , 2010, Nanotechnology.

[246]  K. Popat,et al.  Hemocompatibility of titania nanotube arrays. , 2010, Journal of biomedical materials research. Part A.

[247]  Charles A Schmuttenmaer,et al.  Exciton-like trap states limit electron mobility in TiO2 nanotubes. , 2010, Nature nanotechnology.

[248]  Jiaguo Yu,et al.  Effect of Crystallization Methods on Morphology and Photocatalytic Activity of Anodized TiO2 Nanotube Array Films , 2010 .

[249]  A. Teleki,et al.  Semiconductor gas sensors: dry synthesis and application. , 2010, Angewandte Chemie.

[250]  P. Schmuki,et al.  Self‐organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth , 2010 .

[251]  L Ploux,et al.  The interaction of cells and bacteria with surfaces structured at the nanometre scale. , 2010, Acta biomaterialia.

[252]  P. Schmuki,et al.  TiO2 nanotube layers: Flexible and electrically active flow-through membranes , 2010 .

[253]  P. Schmuki,et al.  Self‐organized TiO2 nanotubes: Factors affecting their morphology and properties , 2010 .

[254]  A. J. Frank,et al.  Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. , 2010, Nano letters.

[255]  Bo Chen,et al.  Unique nanopore pattern formation by focused ion beam guided anodization , 2010, Nanotechnology.

[256]  P. Schmuki,et al.  TiO2 nanotubes grown in different organic electrolytes: Two‐size self‐organization, single vs. double‐walled tubes, and giant diameters , 2010 .

[257]  P. Chu,et al.  Synthesis and Photocatalytic Activity of Highly Ordered TiO2 and SrTiO3/TiO2 Nanotube Arrays on Ti Substrates , 2010 .

[258]  S. Fujimoto,et al.  TiO2 Nanotubes – Annealing Effects on Detailed Morphology and Structure , 2010 .

[259]  P. Schmuki,et al.  Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents , 2010 .

[260]  J. Proost,et al.  What controls the pore spacing in porous anodic oxides , 2010 .

[261]  C. Minero,et al.  Enhancement of the Rate of Photocatalytic Degradation on TiO2 of 2- Chlorophenol, 2,7-Dichlorodibenzodioxin, and Atrazine by Inorganic Oxidizing Species , 2010 .

[262]  Jing Wang,et al.  Ordered Crystalline TiO2 Nanotube Arrays on Transparent FTO Glass for Efficient Dye-Sensitized Solar Cells , 2010 .

[263]  K. Ho,et al.  An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays , 2010 .

[264]  R. Cao,et al.  Artificial, switchable K+-gated ion channels based on flow-through titania-nanotube arrays. , 2010, Physical chemistry chemical physics : PCCP.

[265]  P. Schmuki,et al.  WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. , 2010, Chemistry.

[266]  Il-Doo Kim,et al.  Pd-doped TiO2 nanofiber networks for gas sensor applications , 2010 .

[267]  Tao Wu,et al.  Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. , 2010, Journal of the American Chemical Society.

[268]  Y. Lai,et al.  A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials. , 2010, Colloids and surfaces. B, Biointerfaces.

[269]  Jia Lin,et al.  Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization , 2010 .

[270]  A. J. Frank,et al.  Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells , 2010 .

[271]  P. Schmuki,et al.  Conductivity of TiO2 nanotubes: Influence of annealing time and temperature , 2010 .

[272]  P. Schmuki,et al.  Toward Self-Ordered Silica Nanotubes by Electrochemical Anodization of Si(100) , 2010 .

[273]  P. Schmuki,et al.  Scanning Electron Microscopy Observation of Nanoscopic Wetting of TiO2 Nanotubes and ODS Modified Nanotubes Using Ionic Liquids , 2010 .

[274]  P. Schmuki,et al.  TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops , 2010 .

[275]  P. Schmuki,et al.  Highly defined and ordered top‐openings in TiO2 nanotube arrays , 2010 .

[276]  L. Thompson,et al.  Titania Nanotube Supported Gold Photoanodes for Photoelectrochemical Cells , 2010 .

[277]  Y. Lai,et al.  Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting , 2010 .

[278]  B. Fabry,et al.  Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability. , 2010, Journal of the American Chemical Society.

[279]  N. Swami,et al.  Photoelectrochemical Stability of Electrodeposited Cu2O Films , 2010 .

[280]  Sungho Jin,et al.  Dye-sensitized solar cell constructed with titanium mesh and 3-D array of TiO2 nanotubes. , 2010, The journal of physical chemistry. B.

[281]  P. Schmuki,et al.  TiO2 nano test tubes as a self-cleaning platform for high-sensitivity immunoassays. , 2010, Small.

[282]  Y. Ku,et al.  Effects of TiO(2) nanotube array dimension and annealing temperature on the Acid Red 4 degradation in aqueous solution by photocatalytic process. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[283]  I. Muto,et al.  Hydrogen Gas Sensor Using Pt- and Pd-Added Anodic TiO[sub 2] Nanotube Films , 2010 .

[284]  V. Ursaki,et al.  Self‐organized nucleation layer for the formation of ordered arrays of double‐walled TiO2 nanotubes with temperature controlled inner diameter , 2010 .

[285]  M. Jaskuła,et al.  Fabrication of nanoporous TiO2 by electrochemical anodization , 2010 .

[286]  S. Chaudhary,et al.  Memristive Behavior in Thin Anodic Titania , 2010, IEEE Electron Device Letters.

[287]  Hui Shen,et al.  Synthesis of TiO2 nanotube arrays and its application in mini-3D dye-sensitized solar cells , 2010 .

[288]  Zhiping Luo,et al.  High-density NiTiO3/TiO2 nanotubes synthesized through sol–gel method using well-ordered TiO2 membranes as template , 2010 .

[289]  G. F. Ortiz,et al.  A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries , 2010 .

[290]  Y. R. Smith,et al.  Hydrothermal Synthesis of Bi12TiO20 Nanostrucutures Using Anodized TiO2 Nanotubes and Its Application in Photovoltaics , 2010 .

[291]  Jinsub Choi,et al.  Fabrication of through-hole TiO2 nanotubes by potential shock , 2010 .

[292]  Zafer Ziya Öztürk,et al.  Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor , 2010 .

[293]  S. Zakeeruddin,et al.  Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers. , 2010, Nano letters.

[294]  M. Misra,et al.  Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application , 2010, Nanotechnology.

[295]  Gengmin Zhang,et al.  One-step realization of open-ended TiO2 nanotube arrays by transition of the anodizing voltage , 2010 .

[296]  P. Schmuki,et al.  Modulated TiO2 nanotube stacks and their use in interference sensors , 2010 .

[297]  Dionysios D. Dionysiou,et al.  CLEAN WATER: water detoxification using innovative photocatalysts , 2010 .

[298]  M. Misra,et al.  Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays , 2010, Nanotechnology.

[299]  E. Diau,et al.  Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells , 2010 .

[300]  A. Hirsch,et al.  ToF-SIMS and XPS studies of the adsorption characteristics of a Zn-porphyrin on TiO2. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[301]  S. Luo,et al.  Fabrication of CdSe Nanoparticles Sensitized Long TiO2 Nanotube Arrays for Photocatalytic Degradation of Anthracene-9-carbonxylic Acid under Green Monochromatic Light , 2010 .

[302]  P. Schmuki,et al.  A Photo-Electrochemical Investigation of Self-Organized TiO2 Nanotubes , 2010 .

[303]  A. Kvit,et al.  High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. , 2010, ACS nano.

[304]  S. Yao,et al.  A review on TiO2 nanotube arrays: Fabrication, properties, and sensing applications , 2010 .

[305]  P. Schmuki,et al.  Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO2 , 2010 .

[306]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[307]  N. Ogata,et al.  Photocatalyst Nanofibers Obtained by Calcination of Organic-Inorganic Hybrids , 2010 .

[308]  G. F. Ortiz,et al.  Nanoarchitectured TiO2/SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries? , 2010 .

[309]  P. Schmuki,et al.  Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration , 2010 .

[310]  Erik N. Taylor,et al.  The relationship between the nanostructure of titanium surfaces and bacterial attachment. , 2010, Biomaterials.

[311]  Megan S. Lord,et al.  Influence of nanoscale surface topography on protein adsorption and cellular response , 2010 .

[312]  G. Zeng,et al.  Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid , 2010 .

[313]  Zhiqun Lin,et al.  Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering , 2010 .

[314]  Wen-Yueh Yu,et al.  Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells , 2010 .

[315]  Toshiki Tsubota,et al.  Control of the crystal structure of titanium(IV) oxide by hydrothermal treatment of a titanate nanotube under acidic conditions , 2010 .

[316]  W. Shen,et al.  The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization , 2010, Nanotechnology.

[317]  P. Schmuki,et al.  Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis. , 2010, Journal of the American Chemical Society.

[318]  Liangliang Cao,et al.  Ordered TiO2 Nanotube Arrays on Transparent Conductive Oxide for Dye-Sensitized Solar Cells , 2010 .

[319]  P. Schmuki,et al.  Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes. , 2010, Angewandte Chemie.

[320]  P. Schmuki,et al.  TiO2 nanotubes and their application in dye-sensitized solar cells. , 2010, Nanoscale.

[321]  P. Schmuki,et al.  MoO3 in self-organized TiO2 nanotubes for enhanced photocatalytic activity. , 2010, Chemistry, an Asian journal.

[322]  John Paul Strachan,et al.  Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS , 2009, Nanotechnology.

[323]  G. Cao,et al.  TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation , 2009 .

[324]  Yi Yu,et al.  Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts , 2009 .

[325]  P. Schmuki,et al.  Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells. , 2009, Angewandte Chemie.

[326]  Y. Lai,et al.  Superhydrophilic-Superhydrophobic Template: A Simple Approach to Micro- and Nanostructure Patterning of TiO2 Films , 2009 .

[327]  A. Hirsch,et al.  X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release , 2009 .

[328]  Chung-Kung Lee,et al.  Application of hydrothermal method derived titanate nanotubes as adsorbents. , 2009, Recent patents on nanotechnology.

[329]  S. Lau,et al.  Direct growth of ZnO nanocrystals onto the surface of porous TiO(2) nanotube arrays for highly efficient and recyclable photocatalysts. , 2009, Small.

[330]  V. Subramanian,et al.  Investigation of Physicochemical Parameters That Influence Photocatalytic Degradation of Methyl Orange over TiO2 Nanotubes , 2009 .

[331]  Zhongning Zhang,et al.  Fabrication, Characterization, and Photoelectrocatalytic Application of ZnO Nanorods Grafted on Vertically Aligned TiO2 Nanotubes , 2009 .

[332]  A. Hirsch,et al.  Electrochemical wettability control on conductive TiO2 nanotube surfaces modified with a ferrocene redox system , 2009 .

[333]  Lingzhou Zhao,et al.  Antibacterial coatings on titanium implants. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[334]  Yibing Xie,et al.  Supercapacitor application of nickel oxide-titania nanocomposites , 2009 .

[335]  Jiaguo Yu,et al.  Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method , 2009 .

[336]  P. Schmuki,et al.  Semimetallic TiO2 nanotubes. , 2009, Angewandte Chemie.

[337]  G. Thompson,et al.  Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass , 2009, Nanotechnology.

[338]  N. Tsuji,et al.  Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers , 2009 .

[339]  S. Luo,et al.  Photocatalytic activities of C–N-doped TiO2 nanotube array/carbon nanorod composite , 2009 .

[340]  C. Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[341]  C. A. Chavez,et al.  Preparation of platinum-iridium nanoparticles on titania nanotubes by MOCVD and their catalytic evaluation , 2009 .

[342]  Han Gao,et al.  Conduction-atomic force microscopy study of H2 sensing mechanism in Pd nanoparticles decorated TiO2 nanofilm , 2009 .

[343]  S. Bauer,et al.  Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[344]  Y. Lei,et al.  Pd/TiO2 Nanofibrous Membranes and Their Application in Hydrogen Sensing , 2009 .

[345]  Jiaguo Yu,et al.  Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays , 2009 .

[346]  J. Macák,et al.  Ordered Ferroelectric Lead Titanate Nanocellular Structure by Conversion of Anodic TiO2 Nanotubes , 2009 .

[347]  S. Bauer,et al.  Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. , 2009, Nano letters.

[348]  K. Hebert,et al.  A Model for Coupled Electrical Migration and Stress-Driven Transport in Anodic Oxide Films , 2009 .

[349]  Yue Liu,et al.  Synthesis of immobilized TiO2 nanowires by anodic oxidation and their gas phase photocatalytic properties , 2009 .

[350]  Xin Li,et al.  Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes , 2009 .

[351]  Haitao Huang,et al.  Fabrication of crack-free anodic nanoporous titania and its enhanced photoelectrochemical response , 2009 .

[352]  R. Asmatulu,et al.  Synthesis and variable temperature electrical conductivity studies of highly ordered TiO2 nanotubes , 2009 .

[353]  Mi Zhou,et al.  Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array , 2009 .

[354]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[355]  S. Han,et al.  Highly ordered self-organized TiO2 nanotube arrays prepared by a multi-step anodic oxidation process , 2009 .

[356]  D. Losic,et al.  A simple approach for synthesis of TiO2 nanotubes with through‐hole morphology , 2009 .

[357]  G. F. Ortiz,et al.  TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries , 2009 .

[358]  A. I. Zad,et al.  Comparison of various anodization and annealing conditions of titanium dioxide nanotubular film on MB degradation , 2009 .

[359]  S. Bauer,et al.  Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. , 2009, Acta biomaterialia.

[360]  P. Schmuki,et al.  TiO2 Nanotubes: Efficient Suppression of Top Etching during Anodic Growth Key to Improved High Aspect Ratio Geometries , 2009 .

[361]  N. Tsuji,et al.  Anodic oxide nanotube layers on Ti–Ta alloys: Substrate composition, microstructure and self-organization on two-size scales , 2009 .

[362]  Mano Misra,et al.  Vertically oriented TiO2 nanotube arrays grown on Ti meshes for flexible dye-sensitized solar cells , 2009 .

[363]  P. Schmuki,et al.  Self-Ordered Hexagonal Nanoporous Hafnium Oxide and Transition to Aligned HfO2 Nanotube Layers , 2009 .

[364]  S. Cheng,et al.  Modification of TiO2 nanotube arrays by solution coating , 2009 .

[365]  S. Bauer,et al.  Another look at “Stem cell fate dictated solely by altered nanotube dimension” , 2009, Proceedings of the National Academy of Sciences.

[366]  Wei Zhang,et al.  Anodization Fabrication of Highly Ordered TiO2 Nanotubes , 2009 .

[367]  Zhiqun Lin,et al.  Formation of various TiO2nanostructures from electrochemically anodized titanium , 2009 .

[368]  Min Liu,et al.  Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays , 2009, Nanotechnology.

[369]  Jan M. Macak,et al.  Thick Self-Ordered Nanoporous Ta2O5 Films with Long-Range Lateral Order , 2009 .

[370]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[371]  M. Misra,et al.  Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays , 2009 .

[372]  M. Misra,et al.  Double-wall anodic titania nanotube arrays for water photooxidation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[373]  Wei-min Liu,et al.  A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes , 2009 .

[374]  P. Schmuki,et al.  Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles , 2009 .

[375]  R. Naik,et al.  Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: Photocatalytic activity for hydrogen generation , 2009 .

[376]  M. Laniecki,et al.  Synthesis and characterization of mesoporous Ta2O5–TiO2 photocatalysts for water splitting , 2009 .

[377]  Y. Ein‐Eli,et al.  Enhanced inactivation of E. coli bacteria using immobilized porous TiO2 photoelectrocatalysis , 2009 .

[378]  F. Ozanam,et al.  Experimental study of macropore formation in p-type silicon in a fluoride solution and the transition between macropore formation and electropolishing , 2009 .

[379]  Yuanyuan Xie,et al.  Polyaniline/SnO2 nanocomposite for supercapacitor applications , 2009 .

[380]  K. Hebert,et al.  The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. , 2009, Nature materials.

[381]  C. Schiller,et al.  TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. , 2009, Chemistry, an Asian journal.

[382]  Yoon-Chae Nah,et al.  Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity , 2009 .

[383]  Emeka Nkenke,et al.  In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[384]  Guosheng Shao,et al.  Red Shift in Manganese-and Iron-Doped TiO2 : A DFT+U Analysis , 2009 .

[385]  P. Schmuki,et al.  Transparent TiO2 nanotube electrodes via thin layer anodization: fabrication and use in electrochromic devices. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[386]  J. Macák,et al.  Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes , 2009 .

[387]  P. Schmuki,et al.  Self-organized nano-tubes of TiO2-MoO3 with enhanced electrochromic properties. , 2009, Chemical communications.

[388]  T. Desai,et al.  Long-term small molecule and protein elution from TiO2 nanotubes. , 2009, Nano letters.

[389]  M. Fischer,et al.  Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. , 2009, Angewandte Chemie.

[390]  Dongsheng Xu,et al.  Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells , 2009 .

[391]  Patrik Schmuki,et al.  TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation. , 2009, Small.

[392]  Hai-chao Liang,et al.  Effects of structure of anodic TiO(2) nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. , 2009, Journal of hazardous materials.

[393]  Seonghoon Lee,et al.  A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays , 2009, Nanotechnology.

[394]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[395]  Y. Liu,et al.  TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance , 2009 .

[396]  P. Schmuki,et al.  High aspect ratio, self‐ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes , 2009 .

[397]  Zhen Jin,et al.  Single-Crystalline Anatase TiO2 Dous Assembled Micro-Sphere and Their Photocatalytic Activity , 2009 .

[398]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[399]  V. Birss,et al.  Controlled interconversion of nanoarray of ta dimples and high aspect ratio ta oxide nanotubes. , 2009, Nano letters.

[400]  Jingjing Xu,et al.  Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity , 2009 .

[401]  Sungho Jin,et al.  Stem cell fate dictated solely by altered nanotube dimension , 2009, Proceedings of the National Academy of Sciences.

[402]  G. Pacchioni,et al.  Cr/Sb co-doped TiO2 from first principles calculations , 2009 .

[403]  G. Cao,et al.  Carbon monoxide annealed TiO2nanotube array electrodes for efficient biosensor applications , 2009 .

[404]  Hai-chao Liang,et al.  Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films , 2009 .

[405]  Guohua Chen,et al.  Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. , 2009, Environmental science & technology.

[406]  Shurong Wang,et al.  Synthesis, Characterization of Fe-doped TiO2 Nanotubes with High Photocatalytic Activity , 2009 .

[407]  P. Schmuki,et al.  Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology , 2009, Nanotechnology.

[408]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[409]  A. Golovin,et al.  Effect of ion migration on the self-assembly of porous nanostructures in anodic oxides , 2009 .

[410]  P. Schmuki,et al.  Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles , 2009 .

[411]  Myung-Hwan Whangbo,et al.  Density Functional Characterization of the Visible-Light Absorption in Substitutional C-Anion- and C-Cation-Doped TiO2 , 2009 .

[412]  J. Macák,et al.  Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. , 2009, Angewandte Chemie.

[413]  Xinyong Li,et al.  Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method , 2009 .

[414]  G. Pacchioni,et al.  Boron-Doped Anatase TiO2: Pure and Hybrid DFT Calculations , 2009 .

[415]  J. Macák,et al.  Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4) , 2008 .

[416]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[417]  P. Schmuki,et al.  Formation of hexagonally ordered nanoporous anodic zirconia , 2008 .

[418]  P. Schmuki,et al.  TiO2 Nanotube arrays: Elimination of disordered top layers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells , 2008 .

[419]  M. Misra,et al.  Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes , 2008 .

[420]  Aicheng Chen,et al.  A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. , 2008, Biosensors & bioelectronics.

[421]  Wen-Yueh Yu,et al.  Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. , 2008, Chemical communications.

[422]  P. Schmuki,et al.  Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[423]  Andrei Ghicov,et al.  TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. , 2008, Journal of the American Chemical Society.

[424]  D. King,et al.  Quantum confinement in amorphous TiO2 films studied via atomic layer deposition , 2008, Nanotechnology.

[425]  Emily A. Smith,et al.  How to prevent the loss of surface functionality derived from aminosilanes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[426]  J. Macák,et al.  Formation of Double‐Walled TiO2 Nanotubes and Robust Anatase Membranes , 2008 .

[427]  G. Shi,et al.  Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO(2) nanotube arrays electrode for azo dye degradation. , 2008, Journal of hazardous materials.

[428]  Young-Jig Kim,et al.  Synthesis of effective titania nanotubes for wastewater purification , 2008 .

[429]  A. Fujishima,et al.  Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. , 2008, Environmental science & technology.

[430]  Feng Li,et al.  Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors , 2008, Nanotechnology.

[431]  Z. Su,et al.  Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides , 2008 .

[432]  Peter Greil,et al.  Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes , 2008 .

[433]  K. Hebert,et al.  Stress‐driven transport in ordered porous anodic films , 2008 .

[434]  P. Schmuki,et al.  Lattice widening in niobium-doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. , 2008, Angewandte Chemie.

[435]  Ke‐long Huang,et al.  Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material , 2008 .

[436]  G Van Tendeloo,et al.  Carbon nanotube–TiO2 hybrid films for detecting traces of O2 , 2008, Nanotechnology.

[437]  J. Macák,et al.  Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes , 2008 .

[438]  A. Walker,et al.  Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. , 2008, Journal of the American Chemical Society.

[439]  Seonghoon Lee,et al.  Self-organized regular arrays of anodic TiO2 nanotubes. , 2008, Nano letters.

[440]  S. Bauer,et al.  Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. , 2008, Acta biomaterialia.

[441]  M. Misra,et al.  Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[442]  Hideaki Takahashi,et al.  Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina , 2008, Nanotechnology.

[443]  J. Macák,et al.  TiO2 nanotubes: photocatalyst for cancer cell killing , 2008 .

[444]  J. Macák,et al.  High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. , 2008, Small.

[445]  Nguyen Van Hieu,et al.  Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection , 2008 .

[446]  J. Macák,et al.  Capillary effects, wetting behavior and photo-induced tube filling of TiO2 nanotube layers , 2008, Nanotechnology.

[447]  P. Schmuki,et al.  Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays : A Polarized Micro-Raman Investigation , 2008 .

[448]  Zhongfan Liu,et al.  Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting , 2008, Nanotechnology.

[449]  Haibin Yang,et al.  Synthesis and characterization of TiO2 nanotubes for humidity sensing , 2008 .

[450]  V. K. Mahajan,et al.  Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures , 2008 .

[451]  U. Gösele,et al.  A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. , 2008, Nano letters.

[452]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[453]  P. Schmuki,et al.  Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media , 2008, Nanotechnology.

[454]  S. Fujimoto,et al.  Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys , 2008 .

[455]  Thomas J Webster,et al.  Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces , 2008, International journal of nanomedicine.

[456]  S. Bauer,et al.  Enhanced self‐ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two‐step anodization , 2008 .

[457]  H. Teng,et al.  Chromium-doped titanium dioxide thin-film photoanodes in visible-light-induced water cleavage , 2008 .

[458]  S. Luo,et al.  Graphitized Carbon Nanotubes Formed in TiO2 Nanotube Arrays: A Novel Functional Material with Tube-in-Tube Nanostructure , 2008 .

[459]  Gaetano Granozzi,et al.  The Nature of Defects in Fluorine-Doped TiO2 , 2008 .

[460]  F. Ozanam,et al.  Macromorphologies in electrochemically formed porous silica , 2008 .

[461]  M. Grätzel,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[462]  T. Peng,et al.  Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO2 Nanoparticles , 2008 .

[463]  Nageh K. Allam,et al.  Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes , 2008 .

[464]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[465]  Na Wang,et al.  Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications , 2008 .

[466]  Martin Steinhart,et al.  Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.

[467]  Changku Sun,et al.  Ferroelectric PbTiO3 nanotube arrays synthesized by hydrothermal method , 2008 .

[468]  H. Uhlig,et al.  Thermodynamics: Pourbaix Diagrams , 2008 .

[469]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[470]  J. Macák,et al.  High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta , 2008 .

[471]  J. Macák,et al.  Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface. , 2008, Acta biomaterialia.

[472]  A. Murphy Does carbon doping of TiO2 allow water splitting in visible light? Comments on Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting , 2008 .

[473]  P. Schmuki,et al.  Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. , 2008, Angewandte Chemie.

[474]  Song Han,et al.  Preparation of high efficient photoelectrode of N–F-codoped TiO2 nanotubes , 2008 .

[475]  Thomas J Webster,et al.  TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. , 2008, Journal of biomedical materials research. Part A.

[476]  A. Zunger,et al.  Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. , 2008, Physical review letters.

[477]  Zongyan Zhao,et al.  Mechanism of higher photocatalytic activity of anatase TiO2 doped with nitrogen under visible-light irradiation from density functional theory calculation , 2008 .

[478]  Zhiqun Lin,et al.  Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization , 2008 .

[479]  Lianmao Peng,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[480]  G. Thompson,et al.  Tracer studies of anodic films formed on aluminium in malonic and oxalic acids , 2007 .

[481]  D. Rosseinsky,et al.  Electrochromic Systems: Electrochemistry Kinetics and Mechanism , 2007 .

[482]  G W Blunn,et al.  Fibronectin silanized titanium alloy: a bioinductive and durable coating to enhance fibroblast attachment in vitro. , 2007, Journal of biomedical materials research. Part A.

[483]  Jihye Gwak,et al.  Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor , 2007 .

[484]  Kesong Yang,et al.  Understanding Photocatalytic Activity of S- and P-Doped TiO2 under Visible Light from First-Principles , 2007 .

[485]  Yihe Zhang,et al.  Highly ordered nanoporous TiO2 and its photocatalytic properties , 2007 .

[486]  J. Macák,et al.  Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes , 2007 .

[487]  S. Lo,et al.  Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application , 2007 .

[488]  Xiufeng Xiao,et al.  Influence of titania nanotube arrays on biomimetic deposition apatite on titanium by alkali treatment , 2007 .

[489]  A. J. Frank,et al.  Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. , 2007, Nano letters.

[490]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[491]  Tejal A Desai,et al.  Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? , 2007, Small.

[492]  Baibiao Huang,et al.  Origin of the photoactivity in boron-doped anatase and rutileTiO2calculated from first principles , 2007 .

[493]  Somnath C. Roy,et al.  The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. , 2007, Biomaterials.

[494]  Tejal A Desai,et al.  Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. , 2007, Biomaterials.

[495]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[496]  Laurence M. Peter,et al.  A Reappraisal of the Electron Diffusion Length in Solid-State Dye-Sensitized Solar Cells , 2007 .

[497]  J. Macák,et al.  Filling of TiO2 Nanotubes by Self‐Doping and Electrodeposition , 2007 .

[498]  J. Macák,et al.  Towards ideal hexagonal self‐ordering of TiO2 nanotubes , 2007 .

[499]  G. Thompson,et al.  Stress generated porosity in anodic alumina formed in sulphuric acid electrolyte , 2007 .

[500]  J. Macák,et al.  Anodic Oxide Nanotubes on Ti Alloys , 2007 .

[501]  Eray S. Aydil,et al.  Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells , 2007 .

[502]  J. Macák,et al.  Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers , 2007 .

[503]  A. Murphy Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting , 2007 .

[504]  Jinsub Choi,et al.  Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. , 2007, Small.

[505]  J. Jansen,et al.  The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. , 2007, Biomaterials.

[506]  Kouji Yasuda,et al.  Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals , 2007 .

[507]  Guoliang Zhang,et al.  Preparation of TiO2 Nanotubes and Their Photocatalytic Properties in Degradation Methylcyclohexane , 2007 .

[508]  Seeram Ramakrishna,et al.  Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell , 2007 .

[509]  J. Durrant,et al.  Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit , 2007 .

[510]  D. Fray,et al.  Semiconductor TiO2–Ga2O3 thin film gas sensors derived from particulate sol–gel route , 2007 .

[511]  G. Shi,et al.  Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. , 2007, Environmental science & technology.

[512]  P. Schmuki,et al.  Formation of Self‐Organized Zirconium Titanate Nanotube Layers by Alloy Anodization , 2007 .

[513]  J. Macák,et al.  Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles , 2007 .

[514]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[515]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[516]  Sun-Jae Kim,et al.  Preparation of Titanium Oxide Nanotube by Hydrothermal Process , 2007 .

[517]  Longtu Li,et al.  Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization , 2007 .

[518]  H. S. Lee,et al.  Electron spin resonance from annealed titania nanotubes , 2007 .

[519]  Y. Lai,et al.  Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. , 2007, Environmental science & technology.

[520]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[521]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[522]  K. Shimizu,et al.  Fast migration of fluoride ions in growing anodic titanium oxide , 2007 .

[523]  Huimin Zhao,et al.  Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. , 2007, Environmental pollution.

[524]  J. Macák,et al.  Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes , 2007 .

[525]  J. Macák,et al.  Lithium‐ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast , 2007 .

[526]  H. Teng,et al.  Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells , 2007 .

[527]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[528]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[529]  Ronald J. Willey,et al.  Ultra‐High‐Aspect‐Ratio Titania Nanotubes , 2007 .

[530]  Ying Yu,et al.  Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O , 2007 .

[531]  J. Macák,et al.  A new route for the formation of self-organized anodic porous alumina in neutral electrolytes , 2007 .

[532]  Kouji Yasuda,et al.  Electrochemical formation of self-organized zirconium titanate nanotube multilayers , 2007 .

[533]  Kouji Yasuda,et al.  Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes , 2007 .

[534]  M. Misra,et al.  A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water , 2007 .

[535]  J. Macák,et al.  250 µm long anodic TiO2 nanotubes with hexagonal self‐ordering , 2007 .

[536]  G. Han,et al.  Preparation and Characterization of Anodized Pt–TiO2 Nanotube Arrays for Water Splitting , 2007 .

[537]  R. O’Hayre,et al.  Mott−Schottky and Charge-Transport Analysis of Nanoporous Titanium Dioxide Films in Air , 2007 .

[538]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[539]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[540]  Vesa-Pekka Lehto,et al.  Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment , 2007 .

[541]  Koji Nakane,et al.  Formation of TiO2 nanotubes by thermal decomposition of poly(vinyl alcohol)-titanium alkoxide hybrid nanofibers , 2007 .

[542]  Makoto Egashira,et al.  H2 sensing performance of anodically oxidized TiO2 thin films equipped with Pd electrode , 2007 .

[543]  A. S. Araujo,et al.  Characterization of Nanostructured Titanates Obtained by Alkali Treatment of TiO2-Anatases with Distinct Crystal Sizes , 2007 .

[544]  Andrei Ghicov,et al.  Photoresponse in the visible range from Cr doped TiO2 nanotubes , 2007 .

[545]  Krishnan S. Raja,et al.  Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications , 2006 .

[546]  K. Hebert,et al.  Modeling the Potential Distribution in Porous Anodic Alumina Films during Steady-State Growth , 2006 .

[547]  S. Balaji,et al.  Phonon confinement studies in nanocrystalline anatase‐TiO2 thin films by micro Raman spectroscopy , 2006 .

[548]  Jan M. Macak,et al.  Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes , 2006 .

[549]  D. Bavykin,et al.  Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications , 2006 .

[550]  G. Thompson,et al.  A Tracer Study of Porous Anodic Alumina , 2006 .

[551]  Andrei Ghicov,et al.  TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. , 2006, Angewandte Chemie.

[552]  G. Thompson,et al.  A flow model of porous anodic film growth on aluminium , 2006 .

[553]  A. Akl,et al.  Fabrication and characterization of sputtered titanium dioxide films , 2006 .

[554]  K. Rajeshwar,et al.  Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. , 2006, The journal of physical chemistry. B.

[555]  Qiang Wang,et al.  Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors. , 2006, The journal of physical chemistry. B.

[556]  Mohammad Khaja Nazeeruddin,et al.  High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. , 2006, Chemical communications.

[557]  Huakun Liu,et al.  Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries , 2006 .

[558]  A. Hoffmann,et al.  Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[559]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[560]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[561]  Cheng Sun,et al.  Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO_2/Ti electrode , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[562]  Patrik Schmuki,et al.  TiO2 nanotubes : Tailoring the geometry in H3PO4/HF electrolytes , 2006 .

[563]  A. S. Araujo,et al.  A study on the structure and thermal stability of titanate nanotubes as a function of sodium content , 2006 .

[564]  Yibing Xie Photoelectrochemical reactivity of polyoxophosphotungstates embedded in titania tubules , 2006, Nanotechnology.

[565]  Y. Lai,et al.  Effects of the Structure of TiO2 Nanotube Array on Ti Substrate on Its Photocatalytic Activity , 2006 .

[566]  J. Macák,et al.  Self-organization of anodic nanotubes on two size scales. , 2006, Small.

[567]  Eric Hu,et al.  Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets , 2006 .

[568]  Stanislaus S. Wong,et al.  Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. , 2006, Journal of the American Chemical Society.

[569]  Yu‐Guo Guo,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[570]  X. Xia,et al.  Mechanism of one-step voltage pulse detachment of porous anodic alumina membranes , 2006 .

[571]  Haoshen Zhou,et al.  Utilization of Titanate Nanotubes as an Electrode Material in Dye-Sensitized Solar Cells , 2006 .

[572]  Peter Greil,et al.  Hydroxyapatite growth on anodic TiO2 nanotubes. , 2006, Journal of biomedical materials research. Part A.

[573]  H. Seo,et al.  Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles : Application to dye-sensitized solar cells , 2006 .

[574]  I. Aranson,et al.  Formation of self-organized nanoscale porous structures in anodic aluminum oxide , 2006 .

[575]  Andrei Ghicov,et al.  High photocurrent conversion efficiency in self-organized porous WO3 , 2006 .

[576]  G. Ferns,et al.  The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. , 2006, Atherosclerosis.

[577]  Lothar Frey,et al.  Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes , 2006 .

[578]  Yibing Xie Photoelectrochemical application of nanotubular titania photoanode , 2006 .

[579]  Joachim P Spatz,et al.  Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. , 2006, European journal of cell biology.

[580]  Hong‐Ming Lin,et al.  Hybrid MOS/CNTs Materials for Gas Sensing , 2006 .

[581]  Jan M. Macak,et al.  TiO2 nanotubes: H+insertion and strong electrochromic effects , 2006 .

[582]  Jan M. Macak,et al.  Voltage Oscillations and Morphology during the Galvanostatic Formation of Self-Organized TiO2 Nanotubes , 2006 .

[583]  K. Niihara,et al.  Synthesis and Properties of Titania Nanotube Doped with Small Amount of Cations , 2006 .

[584]  B. Newby,et al.  Suppress polystyrene thin film dewetting by modifying substrate surface with aminopropyltriethoxysilane , 2006 .

[585]  J. Macák,et al.  Annealing effects on the photoresponse of TiO2 nanotubes , 2006 .

[586]  P. Bruce,et al.  TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries , 2006 .

[587]  Tomoko Kasuga,et al.  Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties , 2006 .

[588]  Yudong Huang,et al.  Effect of solvents on adsorption of phenolic resin onto γ-aminopropyl-triethoxysilane treated silica fiber during resin transfer molding , 2006 .

[589]  Ilias Belharouak,et al.  Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2 , 2006 .

[590]  M. Neo,et al.  Development of Apatite Micropattern Test Specimen for Cell Operation , 2006 .

[591]  J. Macák,et al.  Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. , 2005, Journal of biomedical materials research. Part A.

[592]  J. Macák,et al.  Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes , 2005 .

[593]  J. Macák,et al.  Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol , 2005 .

[594]  T. Kitamura,et al.  Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. , 2005, Physical chemistry chemical physics : PCCP.

[595]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[596]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[597]  Sachiko Ono,et al.  Self-ordering of anodic porous alumina formed in organic acid electrolytes , 2005 .

[598]  Jan M. Macak,et al.  Dye-sensitized anodic TiO2 nanotubes , 2005 .

[599]  Eugeniu Balaur,et al.  Wetting behaviour of layers of TiO2 nanotubes with different diameters , 2005 .

[600]  R. Composto,et al.  Block copolymer adsorption from a homopolymer melt to an amine-terminated surface , 2005, The European physical journal. E, Soft matter.

[601]  Eugeniu Balaur,et al.  Tailoring the wettability of TiO2 nanotube layers , 2005 .

[602]  Jan M. Macak,et al.  Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F ∕ ( NH4 ) 2SO4 Electrolytes , 2005 .

[603]  D. Doren,et al.  Electronic structures of V-doped anatase TiO2 , 2005 .

[604]  Yongyao Xia,et al.  An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes , 2005 .

[605]  K. Wada,et al.  Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High‐Field Anodization , 2005 .

[606]  P. Schmuki,et al.  Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation , 2005 .

[607]  P. Bruce,et al.  TiO2–B nanowires as negative electrodes for rechargeable lithium batteries , 2005 .

[608]  Seigo Ito,et al.  Control of dark current in photoelectrochemical (TiO2/I--I3-)) and dye-sensitized solar cells. , 2005, Chemical communications.

[609]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[610]  Sungho Jin,et al.  Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. , 2005, Biomaterials.

[611]  Xueping Gao,et al.  Titanate Nanotubes and Nanorods Prepared from Rutile Powder , 2005 .

[612]  N. Padture,et al.  Nanotubes patterned thin films of barium-strontium titanate , 2005 .

[613]  L. Peter,et al.  Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells. , 2005, The journal of physical chemistry. B.

[614]  J. Macák,et al.  Fabrication and characterization of smooth high aspect ratio zirconia nanotubes , 2005 .

[615]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[616]  In-Seop Lee,et al.  Effects of RGD peptide grafting to titanium dental implants on the adhesion of human gingival fibroblasts and epithelial cells , 2005 .

[617]  Krishnan S. Raja,et al.  Deposition of calcium phosphate coating on nanotubular anodized titanium , 2005 .

[618]  Jan M. Macak,et al.  Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes , 2005 .

[619]  P. Bruce,et al.  Nanotubes with the TiO2-B structure. , 2005, Chemical communications.

[620]  Lei Xu,et al.  Co3O4 Nanomaterials in Lithium‐Ion Batteries and Gas Sensors , 2005 .

[621]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[622]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[623]  S. Yoshikawa,et al.  Natural rutile-derived titanate nanofibers prepared by direct hydrothermal processing , 2005 .

[624]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[625]  J. P. Lewis,et al.  Second-generation photocatalytic materials: anion-doped TiO2 , 2005 .

[626]  L. Peter,et al.  How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? , 2005, The journal of physical chemistry. B.

[627]  M. Miyauchi,et al.  Electrochromism of titanate-based nanotubes. , 2005, Angewandte Chemie.

[628]  Tetsuya Osaka,et al.  Fabrication of amino silane-coated microchip for DNA extraction from whole blood. , 2005, Journal of biotechnology.

[629]  M. Osada,et al.  Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. , 2005, The journal of physical chemistry. B.

[630]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[631]  M. Fernández-García,et al.  Nanostructured Ti-W mixed-metal oxides: structural and electronic properties. , 2005, The journal of physical chemistry. B.

[632]  W. Smyrl,et al.  Zirconium Oxide Nanotubes Synthesized via Direct Electrochemical Anodization , 2005 .

[633]  Jan M. Macak,et al.  Self-organized porous WO3 formed in NaF electrolytes , 2005 .

[634]  P. Schmuki,et al.  Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes , 2005 .

[635]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[636]  J. Crittenden,et al.  Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. , 2005, Environmental science & technology.

[637]  Lian-Mao Peng,et al.  Structure and formation ofH2Ti3O7nanotubes in an alkali environment , 2005 .

[638]  Kristen A. Wieghaus,et al.  Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[639]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[640]  Toshio Suzuki,et al.  Electrical Conductivity and Lattice Defects in Nanocrystalline Cerium Oxide Thin Films , 2004 .

[641]  A. Karmous,et al.  Ge dot organization on Si substrates patterned by focused ion beam , 2004 .

[642]  R. Ahuja,et al.  High-pressure and high-temperature synthesis of the cubic TiO2 polymorph , 2004 .

[643]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[644]  D. Bavykin,et al.  The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes , 2004 .

[645]  Z. Wen,et al.  Preparation and electrochemical performance of Ag doped Li4Ti5O12 , 2004 .

[646]  Patrik Schmuki,et al.  Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes , 2004 .

[647]  Si-hoon Lee,et al.  Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor , 2004 .

[648]  C. Ziegler,et al.  Electrical properties of nanocrystalline anatase TiO2 thin films with different crystallite size , 2004 .

[649]  J. Hanson,et al.  Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.

[650]  Jaegab Lee,et al.  Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness , 2004 .

[651]  U. Gösele,et al.  Anodization of nanoimprinted titanium: a comparison with formation of porous alumina , 2004 .

[652]  B. Su,et al.  Titanium oxide nanotubes, nanofibers and nanowires , 2004 .

[653]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[654]  A. Nakahira,et al.  Synthesis of nanotube from a layered H2Ti4O9 · H2O in a hydrothermal treatment using various titania sources , 2004 .

[655]  Giorgio Sberveglieri,et al.  TiO2:Mo, MoO3:Ti, TiO + WO3 and TiO:W layer for landfill produced gases sensing , 2004 .

[656]  Ke‐long Huang,et al.  Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate , 2004 .

[657]  W. Yonggang,et al.  Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites , 2004 .

[658]  N. Miura,et al.  Electrochemical Deposition of Nanostructured Indium Oxide: High-Performance Electrode Material for Redox Supercapacitors , 2004 .

[659]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[660]  Susumu Yoshikawa,et al.  Synthesis and Thermal Analyses of TiO_2-Derived Nanotubes Prepared by the Hydrothermal Method , 2004 .

[661]  Younan Xia,et al.  Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning , 2004 .

[662]  Martin Steinhart,et al.  Nanotubes by template wetting: a modular assembly system. , 2004, Angewandte Chemie.

[663]  Yingke Zhou,et al.  Nanocrystalline NiO as an electrode material for electrochemical capacitor , 2004 .

[664]  C. Grimes,et al.  A study on the growth and structure of titania nanotubes , 2004 .

[665]  G. Cao,et al.  A study on the growth of TiO2 nanorods using sol electrophoresis , 2004 .

[666]  Yasushi Murakami,et al.  Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode , 2004 .

[667]  Kook-Nyung Lee,et al.  Effects of polymer grafting on a glass surface for protein chip applications , 2004 .

[668]  Laurence M. Peter,et al.  Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells , 2003 .

[669]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[670]  Christopher Post,et al.  The application of biofilm science to the study and control of chronic bacterial infections. , 2003, The Journal of clinical investigation.

[671]  R. Ma,et al.  Nanotubes of lepidocrocite titanates , 2003 .

[672]  R. Reddy,et al.  Sol–gel MnO2 as an electrode material for electrochemical capacitors , 2003 .

[673]  Reinald Hillebrand,et al.  Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers , 2003 .

[674]  Yingke Zhou,et al.  Lithium Insertion into TiO2 Nanotube Prepared by the Hydrothermal Process , 2003 .

[675]  A. Govindaraj,et al.  Hydrogel route to nanotubes of metal oxides and sulfates , 2003 .

[676]  Craig A Grimes,et al.  Metal oxide nanoarchitectures for environmental sensing. , 2003, Journal of nanoscience and nanotechnology.

[677]  Paulo Roberto Bueno,et al.  Nanostructured Li Ion Insertion Electrodes. 1. Discussion on Fast Transport and Short Path for Ion Diffusion , 2003 .

[678]  S. Yoshikawa,et al.  Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells , 2003 .

[679]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[680]  Hsin-Tien Chiu,et al.  Preparing titanium oxide with various morphologies , 2003 .

[681]  Ralf B. Wehrspohn,et al.  Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate , 2003 .

[682]  Yadong Li,et al.  Synthesis and characterization of ion-exchangeable titanate nanotubes. , 2003, Chemistry.

[683]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[684]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[685]  Beth Schachter,et al.  Slimy business—the biotechnology of biofilms , 2003, Nature Biotechnology.

[686]  Shoso Shingubara,et al.  Fabrication of Nanomaterials Using Porous Alumina Templates , 2003 .

[687]  V. Castaño,et al.  Infiltration of Glassy Bodies with Zirconia Nanoparticles , 2003 .

[688]  Y. Nakato,et al.  Crystal-face and illumination intensity dependences of the quantum efficiency of photoelectrochemical etching, in relation to those of water photooxidation, at n-TiO2 (rutile) semiconductor electrodes , 2003 .

[689]  M. Reiche,et al.  Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp , 2003 .

[690]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[691]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[692]  A. Datta,et al.  High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays , 2003 .

[693]  Andreas Greiner,et al.  Electrospun nanofibers: Internal structure and intrinsic orientation , 2003 .

[694]  T. Tamamura,et al.  Ordered Mosaic Nanocomposites in Anodic Porous Alumina , 2003 .

[695]  Ralf B. Wehrspohn,et al.  Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio , 2003 .

[696]  Ning Wang,et al.  Formation mechanism of TiO2 nanotubes , 2003 .

[697]  T. Yao,et al.  Micropattern formation of apatite by combination of a biomimetic process and transcription of resist pattern. , 2002, Journal of biomedical materials research.

[698]  A. Fadeev,et al.  Self-assembled monolayers supported on TiO2: Comparison of C18H37SiX3 (X = H, Cl, OCH3), C18H37Si(CH3)2Cl, and C18H37PO(OH)2 , 2002 .

[699]  P. Ordejón,et al.  Designed Self‐Doped Titanium Oxide Thin Films for Efficient Visible‐Light Photocatalysis , 2002 .

[700]  K. Asai,et al.  Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations , 2002 .

[701]  Takayuki Kitamura,et al.  Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells , 2002 .

[702]  Qing Chen,et al.  Trititanate nanotubes made via a single alkali treatment , 2002 .

[703]  Herbert Wormeester,et al.  Ionic strength mediated self-organization of gold nanocrystals: An AFM study , 2002 .

[704]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[705]  M. Wagemaker,et al.  Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase , 2002, Nature.

[706]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[707]  K. Okabe,et al.  Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™Buckytubes™) in propylene carbonate electrolytes , 2002 .

[708]  N. Harrison,et al.  First-principles calculations of the phase stability of TiO2 , 2002 .

[709]  K. Hanabusa,et al.  Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. , 2002, Journal of the American Chemical Society.

[710]  A. Navrotsky,et al.  Energetics of nanocrystalline TiO2 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[711]  S. Shinkai,et al.  Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template , 2002 .

[712]  P. Knauth Defect and transport properties of nanocrystalline ceramics and thin films , 2002 .

[713]  J. Wendorff,et al.  Poly(p-xylylene) Nanotubes by Coating and Removal of Ultrathin Polymer Template Fibers , 2002 .

[714]  Ralf B. Wehrspohn,et al.  Highly ordered monocrystalline silver nanowire arrays , 2002 .

[715]  Hsueh-Chia Chang,et al.  Nanoscale pore formation dynamics during aluminum anodization. , 2002, Chaos.

[716]  Shaomin Liu,et al.  SYNTHESIS OF SINGLE-CRYSTALLINE TIO2 NANOTUBES , 2002 .

[717]  M. Nogami,et al.  Apatite formation on TiO2 in simulated body fluid , 2002 .

[718]  Hongkun Park,et al.  Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. , 2002, Journal of the American Chemical Society.

[719]  E. R. Fisher,et al.  Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes , 2002 .

[720]  K. Wada,et al.  Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization and Sol−Gel Process , 2002 .

[721]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[722]  Qing Chen,et al.  Preparation and structure analysis of titanium oxide nanotubes , 2001 .

[723]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[724]  Toshiaki Tamamura,et al.  Ideally Ordered Anodic Porous Alumina Mask Prepared by Imprinting of Vacuum-Evaporated Al on Si , 2001 .

[725]  K. Nishio,et al.  Photonic Band Gap in Naturally Occurring Ordered Anodic Porous Alumina , 2001 .

[726]  C. Di Natale,et al.  A contribution on some basic definitions of sensors properties , 2001, IEEE Sensors Journal.

[727]  A. Eftekhari,et al.  Aluminum electrode modified with manganese hexacyanoferrate as a chemical sensor for hydrogen peroxide. , 2001, Talanta.

[728]  Ralf B. Wehrspohn,et al.  Hexagonally ordered 100 nm period nickel nanowire arrays , 2001 .

[729]  R. Wehrspohn,et al.  Electrochemically Prepared Pore Arrays for Photonic-Crystal Applications , 2001 .

[730]  M. S. Dresselhaus,et al.  Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes , 2001 .

[731]  G. Cao,et al.  Electrophoretic Growth of Lead Zirconate Titanate Nanorods , 2001 .

[732]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[733]  Hwan Kim,et al.  Preparation of nanotube-shaped TiO2 powder , 2001 .

[734]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[735]  M. Steinhart,et al.  Preparation of Fibers With Nanoscaled Morphologies: Electrospinning of Polymer Blends , 2001 .

[736]  J. Rosenholm,et al.  Aqueous Amino Silane Modification of E-glass Surfaces. , 2001, Journal of colloid and interface science.

[737]  A. Varandas,et al.  The OH(v′)+O2(v″) reaction: a new source of stratospheric ozone? , 2001 .

[738]  Y. Lei,et al.  Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 , 2001 .

[739]  Toshiaki Tamamura,et al.  Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al , 2001 .

[740]  T. Tamamura,et al.  Square and Triangular Nanohole Array Architectures in Anodic Alumina , 2001 .

[741]  Takashi Nakamura,et al.  XPS study of the process of apatite formation on bioactive Ti—6Al—4V alloy in simulated body fluid , 2001 .

[742]  M. Grätzel,et al.  Adsorption Studies of Counterions Carried by the Sensitizer cis-Dithiocyanato(2,2'-bipyridyl-4,4'-dicarboxylate) Ruthenium(II) on Nanocrystalline TiO2 Films , 2000 .

[743]  P. Schmuki,et al.  Selective high-resolution electrodeposition on semiconductor defect patterns. , 2000, Physical review letters.

[744]  T. Tamamura,et al.  Photonic Band Gap in Anodic Porous Alumina with Extremely High Aspect Ratio Formed in Phosphoric Acid Solution , 2000 .

[745]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[746]  S. Yoshikawa,et al.  Formation of Titania Nanotubes with High Photo-Catalytic Activity , 2000 .

[747]  Yasushi Yamada,et al.  NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties , 2000 .

[748]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[749]  S. Shinkai,et al.  Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies , 2000 .

[750]  M. Lohrengel,et al.  Stability, reactivity and breakdown of passive films. Problems of recent and future research , 2000 .

[751]  Andreas Greiner,et al.  Polymer, Metal, and Hybrid Nano‐ and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process) , 2000 .

[752]  Alexei M. Tyryshkin,et al.  The Influence of the Bulk Reduction State on the Surface Structure and Morphology of Rutile TiO2(110) Single Crystals , 2000 .

[753]  Yongli He,et al.  Raman scattering study on anatase TiO2 nanocrystals , 2000 .

[754]  A. Zaban,et al.  The Effect of the Preparation Condition of TiO2 Colloids on Their Surface Structures , 2000 .

[755]  Andrzej Huczko,et al.  Template-based synthesis of nanomaterials , 2000 .

[756]  Kornelius Nielsch,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition , 2000 .

[757]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[758]  Philip Kim,et al.  Structure and Electronic Properties of Carbon Nanotubes , 2000 .

[759]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[760]  Toshiaki Tamamura,et al.  Photonic Crystal Using Anodic Porous Alumina , 1999 .

[761]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[762]  J. Castle,et al.  The determination of adsorption isotherms by XPS and ToF-SIMS: their role in adhesion science , 1999 .

[763]  Tohru Sekino,et al.  Titania Nanotubes Prepared by Chemical Processing , 1999 .

[764]  Liquan Chen,et al.  Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries , 1999 .

[765]  R. Nesper,et al.  Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes , 1999 .

[766]  S. Robledo,et al.  Photocatalytic degradation of 3,4-xylyl N-methylcarbamate (MPMC) and other carbamate pesticides in aqueous TiO2 suspensions , 1999 .

[767]  P. Novák,et al.  Vanadium Oxide Nanotubes. A New Nanostructured Redox‐Active Material for the Electrochemical Insertion of Lithium , 1999 .

[768]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[769]  S. Musić,et al.  The effects of crystal size on the Raman spectra of nanophase TiO2 , 1999 .

[770]  Prabir K. Dutta,et al.  Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures: Optimization of a Carbon Monoxide Sensor , 1999 .

[771]  A. J. Frank,et al.  Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4 , 1999 .

[772]  L. Sangaletti,et al.  Correlation between crystallite sizes and microstrains in TiO2 nanopowders , 1999 .

[773]  James R. Mihelcic,et al.  Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals , 1999 .

[774]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[775]  Frank Müller,et al.  Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina , 1998 .

[776]  Wojtek Wlodarski,et al.  XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method , 1998 .

[777]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[778]  Stella W. Pang,et al.  Direct nano-printing on Al substrate using a SiC mold , 1998 .

[779]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[780]  P. P. Lottici,et al.  Phonon confinement effects in the Raman scattering by TiO2 nanocrystals , 1998 .

[781]  K. Langer,et al.  Electronic absorption by Ti3+ ions and electron delocalization in synthetic blue rutile , 1998 .

[782]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[783]  D. J. Lockwood,et al.  LIGHT EMITTING MICROPATTERNS OF POROUS SI CREATED AT SURFACE DEFECTS , 1998 .

[784]  M. McKee,et al.  Chemical modification of titanium surfaces for covalent attachment of biological molecules. , 1998, Journal of biomedical materials research.

[785]  G. Rohrer,et al.  Orientation Dependence of Photochemical Reactions on TiO2 Surfaces , 1998 .

[786]  S. Chakarvarti,et al.  Template synthesis—a membrane based technology for generation of nano-/micro materials: a review , 1998 .

[787]  Akira Fujishima,et al.  Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts , 1998 .

[788]  Stephen Y. Chou,et al.  Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe , 1997 .

[789]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[790]  Stephen Y. Chou,et al.  Nanoscale silicon field effect transistors fabricated using imprint lithography , 1997 .

[791]  M. Anpo Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light , 1997 .

[792]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[793]  A. Sharma,et al.  Photocatalytic degradation of cetylpyridinium chloride over titanium dioxide powder , 1997 .

[794]  Wei Zhang,et al.  Sub-10 nm imprint lithography and applications , 1997, 1997 55th Annual Device Research Conference Digest.

[795]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[796]  Yuichi Ichihashi,et al.  Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt , 1997 .

[797]  G. Thompson,et al.  Porous anodic alumina: fabrication, characterization and applications , 1997 .

[798]  Peter K. Dorhout,et al.  Sol−Gel Template Synthesis of Semiconductor Nanostructures , 1997 .

[799]  M. Barteau,et al.  Isothermal Reduction Kinetics of Titanium Dioxide-Based Materials , 1997 .

[800]  Michael Grätzel,et al.  Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films , 1996 .

[801]  D. Reneker,et al.  Nanometre diameter fibres of polymer, produced by electrospinning , 1996 .

[802]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[803]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[804]  J. Augustynski,et al.  Photoelectrochemical studies pertaining to the activity of TiO2 towards photodegradation of organic compounds , 1995 .

[805]  Yuichi Ichihashi,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts , 1995 .

[806]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[807]  A. Fujishima,et al.  SELECTIVE KILLING OF A SINGLE CANCEROUS T24 CELL WITH TIO2 SEMICONDUCTING MICROELECTRODE UNDER IRRADIATION , 1995 .

[808]  R. Tenne,et al.  High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes , 1995, Science.

[809]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[810]  Donald R. Baer,et al.  Creation of variable concentrations of defects on TiO2(110) using low-density electron beams , 1994 .

[811]  S. Aota,et al.  The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. , 1994, The Journal of biological chemistry.

[812]  K. Rajeshwar,et al.  Bactericidal Activity of TiO2 Photocatalyst in Aqueous Media: Toward a Solar-Assisted Water Disinfection System. , 1994, Environmental science & technology.

[813]  I. Kangasniemi,et al.  Bonelike Hydroxyapatite Induction by a Gel‐Derived Titania on a Titanium Substrate , 1994 .

[814]  G. Margaritondo,et al.  Electronic-Structure of Anatase Tio2 Oxide , 1994 .

[815]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[816]  M. Lohrengel,et al.  Thin anodic oxide layers on aluminium and other valve metals: high field regime , 1993 .

[817]  S. Hotchandani,et al.  Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol , 1993 .

[818]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[819]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[820]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[821]  Osamu Ishitani,et al.  Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2 , 1993 .

[822]  M. M. Khader,et al.  Mechanism of reduction of rutile with hydrogen , 1993 .

[823]  Hikaru Kobayashi,et al.  Mechanism of hydrogen sensing by Pd/TiO2 Schottky diodes , 1993 .

[824]  L. Kavan,et al.  Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3 , 1993 .

[825]  R. A. Oriani,et al.  Stress generation during anodic oxidation of titanium and aluminum , 1993 .

[826]  Makoto Egashira,et al.  Trimethylamine-sensing mechanism of TiO2-based sensors 1. Effects of metal additives on trimethylamine-sensing properties of TiO2 sensors☆ , 1993 .

[827]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[828]  K. Shimizu,et al.  Development of porous anodic films on aluminium , 1992 .

[829]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[830]  Chelikowsky,et al.  Structural and electronic properties of titanium dioxide. , 1992, Physical review. B, Condensed matter.

[831]  M. Anpo,et al.  Photocatalytic reduction of CO2 on anchored titanium oxide catalysts , 1992 .

[832]  R. J. Neat,et al.  Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell , 1992 .

[833]  A. Fujishima,et al.  Induction of cytotoxicity by photoexcited TiO2 particles. , 1992, Cancer research.

[834]  A. Vogler,et al.  Photo-oxidation of organic compound in the presence of titanium dioxide: determination of the efficiency , 1992 .

[835]  Davis,et al.  Morphological instability in epitaxially strained dislocation-free solid films. , 1991, Physical review letters.

[836]  S. Ono,et al.  Defects in Porous Anodic Films Formed on High Purity Aluminum , 1991 .

[837]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[838]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[839]  T. Hanawa,et al.  Calcium phosphate naturally formed on titanium in electrolyte solution. , 1991, Biomaterials.

[840]  Keiichi Tanaka,et al.  Photocatalytic degradation of organochlorine compounds in suspended TiO2 , 1990 .

[841]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[842]  A. Gonzalez-Elipe,et al.  Mechanism of hydrogen gas-sensing at low temperatures using Rh/TiO2 systems , 1989 .

[843]  Detlef W. Bahnemann,et al.  Preparation and characterization of quantum-size titanium dioxide , 1988 .

[844]  T. Jacobsen,et al.  Lithium insertion in different TiO2 modifications , 1988 .

[845]  R. W. Matthews Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide , 1988 .

[846]  Jan Augustynski,et al.  Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films , 1988 .

[847]  D. W. Johnson,et al.  Controlled suppression and enhancement of the photoactivity of titanium dioxide (rutile) pigment , 1987 .

[848]  A. Gristina,et al.  Biomaterial-centered infection: microbial adhesion versus tissue integration. , 1987, Science.

[849]  C. Leygraf,et al.  Effects of electrochemical reduction of polycrystalline TiO2 photoelectrodes in acidic solutions , 1987 .

[850]  M. Anpo,et al.  Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates , 1987 .

[851]  M. Lübke,et al.  A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit , 1986 .

[852]  M. Grätzel,et al.  EPR observation of trapped electrons in colloidal titanium dioxide , 1985 .

[853]  L. Kavan,et al.  Highly efficient sensitization of titanium dioxide , 1985 .

[854]  E. H. Andrews,et al.  Oxide morphology and adhesive bonding on titanium surfaces , 1984 .

[855]  K. Hashimoto,et al.  Catalytic properties of ruthenium oxide on n-type semiconductors under illumination , 1984 .

[856]  D. Murphy,et al.  Ternary LixTiO2 phases from insertion reactions , 1983 .

[857]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[858]  A. Harriman,et al.  Design, preparation and characterization of ruthenium dioxide/titanium dioxide catalytic surfaces active in photooxidation of water , 1983 .

[859]  M. Dignam,et al.  Effect of Hydrogen on the Dielectric and Photoelectrochemical Properties of Sputtered TiO2 Films , 1982 .

[860]  J. Goodenough,et al.  Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0 , 1982 .

[861]  Luc Brohan,et al.  TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17 , 1980 .

[862]  T. Kawai,et al.  Conversion of carbohydrate into hydrogen fuel by a photocatalytic process , 1980, Nature.

[863]  R. Schumacher,et al.  The Influence of Preparation on Semiconducting Rutile ( TiO2 ) , 1980 .

[864]  T. Sham,et al.  X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces , 1979 .

[865]  D. Ginley,et al.  Hydrogen in TiO2 Photoanodes , 1979 .

[866]  D. Mathur,et al.  Odd and even numbered hydrogen ion clusters , 1979, Nature.

[867]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[868]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[869]  M. Calvin,et al.  Adsorption and oxidation of rhodamine B at ZnO electrodes , 1977 .

[870]  A. Ghosh,et al.  Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes , 1977 .

[871]  J. Siejka,et al.  An O18 Study of Field‐Assisted Pore Formation in Compact Anodic Oxide Films on Aluminum , 1977 .

[872]  M. Calvin,et al.  Electron transfer at sensitized TiO2 electrodes , 1977 .

[873]  A. Matthews The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions , 1976 .

[874]  M. Matsumura,et al.  Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell , 1976, Nature.

[875]  H. Tributsch REACTION OF EXCITED CHLOROPHYLL MOLECULES AT ELECTRODES AND IN PHOTOSYNTHESIS * , 1972 .

[876]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[877]  K. J. Vetter General kinetics of passive layers on metals , 1971 .

[878]  L. Chua Memristor-The missing circuit element , 1971 .

[879]  H. Tributsch,et al.  ELECTROCHEMISTRY OF EXCITED MOLECULES: PHOTO‐ELECTROCHEMICAL REACTIONS OF CHLOROPHYLLS * , 1971 .

[880]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[881]  D. Brandon,et al.  Electron-beam crystallization of anodic oxide films☆ , 1970 .

[882]  R. F. Bartholomew,et al.  Electrical Properties of Some Titanium Oxides , 1969 .

[883]  Heinz Gerischer,et al.  Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO‐Einkristallen , 1968 .

[884]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[885]  Wolfgang W. Gärtner,et al.  Depletion-Layer Photoeffects in Semiconductors , 1959 .

[886]  D. C. Cronemeyer Infrared Absorption of Reduced Rutile Ti O 2 Single Crystals , 1959 .

[887]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[888]  D. C. Cronemeyer Electrical and Optical Properties of Rutile Single Crystals , 1952 .

[889]  J. Moser Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung , 1887 .

[890]  F. Sanz,et al.  Growth of ordered anodic SnO2 nanochannel layers and their use for H2 gas sensing , 2014 .

[891]  Sang Jin Kim,et al.  High Efficiency Solid‐State Dye‐Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Tree‐like TiO2 Nanotubes , 2014 .

[892]  X. Lou,et al.  TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries , 2013 .

[893]  Lingzhou Zhao,et al.  The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. , 2013, Biomaterials.

[894]  G. F. Ortiz,et al.  Controlled Growth and Application in Lithium and Sodium Batteries of High-Aspect-Ratio, Self-Organized Titania Nanotubes , 2013 .

[895]  P. Schmuki,et al.  Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynami , 2013 .

[896]  Sungho Jin,et al.  Preparation of near micrometer-sized TiO2 nanotube arrays by high voltage anodization. , 2013, Materials science & engineering. C, Materials for biological applications.

[897]  K. Subramani,et al.  Titanium nanotubes as carriers of osteogenic growth factors and antibacterial drugs for applications in dental implantology , 2012 .

[898]  Dionysios D. Dionysiou,et al.  Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films , 2012 .

[899]  B. Liu,et al.  Photocatalytic Activity of (B, N)‐Codoped Titanate Nanotubes , 2012 .

[900]  Jihperng Leu,et al.  TiO2 Nanowires on Anodic TiO2 Nanotube Arrays (TNWs/TNAs): Formation Mechanism and Photocatalytic Performance , 2012 .

[901]  P. Schmuki,et al.  Palladium Activated Decoration of TiO2 Nanotubes by Copper Nanoparticles and Enhanced Photocatalytic Properties , 2012 .

[902]  N. Sharma,et al.  TiO2(B)@anatase hybrid nanowires with highly reversible electrochemical performance , 2011 .

[903]  S. Fujimoto,et al.  Nitrogen-doped TiO2 mesosponge layers formed by anodization of nitrogen-containing Ti alloys , 2011, Journal of Solid State Electrochemistry.

[904]  Q. Xiao,et al.  Photocatalytic photodegradation of xanthate over C, N, S-tridoped TiO2 nanotubes under visible light irradiation , 2011 .

[905]  Andreas Pittrof,et al.  Micropatterned TiO₂ nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid. , 2011, Acta biomaterialia.

[906]  T. Sekino Synthesis and Applications of Titanium Oxide Nanotubes , 2010 .

[907]  Patrik Schmuki,et al.  Influence of Water Content on the Growth of Anodic TiO2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes , 2010 .

[908]  K. Rajeshwar,et al.  Bisphenol A removal from wastewater using self-organized TIO(2) nanotubular array electrodes. , 2010, Chemosphere.

[909]  D. Wongratanaphisan,et al.  Enhancement of Ethanol Sensing Properties by Alloying ${\rm TiO}_{2}$ With ZnO Tetrapods , 2010, IEEE Sensors Journal.

[910]  P. Schmuki,et al.  Electrochemistry at the Nanoscale , 2009 .

[911]  P. Schmuki,et al.  Properties of the Nanoporous Anodic Oxide Electrochemically Grown on Steel in Hot 50% NaOH , 2009 .

[912]  Patrik Schmuki,et al.  Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix , 2009, Cell and Tissue Research.

[913]  Z. Su,et al.  Porous Anodic Metal Oxides , 2008 .

[914]  J. Macák,et al.  Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles , 2008 .

[915]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[916]  Xiaogang Zhang,et al.  Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries , 2008 .

[917]  J. Macák,et al.  Characterization of electronic properties of TiO2 nanotube films , 2007 .

[918]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[919]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[920]  N. Ming,et al.  Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts , 2006 .

[921]  Patrik Schmuki,et al.  Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization , 2005 .

[922]  Patrik Schmuki,et al.  Formation of self-organized niobium porous oxide on niobium , 2005 .

[923]  James L. Gole,et al.  Defect‐Related Optical Behavior in Surface Modified TiO2 Nanostructures , 2005 .

[924]  X. Bao,et al.  The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. , 2003, Chemosphere.

[925]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[926]  P. Tengvall Proteins at Titanium Interfaces , 2001 .

[927]  A. Datta,et al.  Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces , 2001 .

[928]  M. Grätzel Photoelectrochemical cells , 2001, Nature.

[929]  Andreas Greiner,et al.  Nanostructured Fibers via Electrospinning , 2001 .

[930]  Yoshio Bando,et al.  Sol-gel template preparation of TiO2 nanotubes and nanorods , 2001 .

[931]  A. Zaban,et al.  Nanosize rutile titania particle synthesis viaa hydrothermal method without mineralizers , 2000 .

[932]  C. Maccato,et al.  Electronic structure of Nb impurities in and on TiO2 , 1999 .

[933]  H. Minoura,et al.  Designing a TiO2 Nano‐Honeycomb Structure Using Photoelectrochemical Etching , 1999 .

[934]  H. Haerudin,et al.  Surface stoichiometry of ‘titanium suboxide’ , 1998 .

[935]  J. Sakamoto,et al.  The effects of particle size on SnO electrode performance in lithium-ion cells , 1998 .

[936]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[937]  Walter Z. Tang,et al.  TiO2/UV Photodegradation of Azo Dyes in Aqueous Solutions , 1997 .

[938]  Suresh Das,et al.  Photocatalytic degradation of waste water pollutants. Titanium dioxidemediated oxidation of a textile dye, Acid Blue 40 , 1997 .

[939]  K. Shimizu,et al.  A Model for the Incorporation of Electrolyte Species into Anodic Alumina , 1996 .

[940]  Y. Teraoka,et al.  Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts , 1994 .

[941]  David Emin,et al.  High mobility n‐type charge carriers in large single crystals of anatase (TiO2) , 1994 .

[942]  P. Kamat,et al.  Electrochemically Assisted Photocatalysis. 2. The Role of Oxygen and Reaction Intermediates in the Degradation of 4-Chlorophenol on Immobilized TiO2 Particulate Films , 1994 .

[943]  M. Ginsberg,et al.  Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. , 1991, Trends in biochemical sciences.

[944]  C. Minero,et al.  Photocatalytic degradation of polychlorinated dioxins and polychlorinated biphenyls in aqueous suspensions of semiconductors irradiated with simulated solar light , 1988 .

[945]  T. A. Hewston,et al.  A Survey of first-row ternary oxides LiMO2 (M = Sc-Cu) , 1987 .

[946]  W. Kaiser,et al.  TiO2 film oxygen sensors made by chemical vapour deposition from organometallics , 1983 .

[947]  B. Aurian‐Blajeni,et al.  Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials , 1980 .

[948]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .