Absolute stability of the Kirchhoff string with sector boundary control

This paper addresses the stability problem of the nonlinear Kirchhoff string with nonlinear boundary control. The nonlinear boundary control is the negative feedback of the transverse velocity of the string at one end, which satisfies a sector constraint. Employing the integral type multiplier method, we establish explicit absolute exponential stability of the Kirchhoff string system.

[1]  K. Gu Stability and Stabilization of Infinite Dimensional Systems with Applications , 1999 .

[2]  G. Kirchhoff,et al.  Vorlesungen über Mechanik , 1897 .

[3]  Kosuke Ono,et al.  GLOBAL EXISTENCE, DECAY, AND BLOWUP OF SOLUTIONS FOR SOME MILDLY DEGENERATE NONLINEAR KIRCHHOFF STRINGS , 1997 .

[4]  M. Miranda,et al.  Existence and boundary stabilization of solutions for the kirchhoff equation , 1999 .

[5]  Jun-feng Li,et al.  Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback , 2008, Autom..

[6]  Jianjun Wang,et al.  Active Vibration Control Methods of Axially Moving Materials - A Review , 2004 .

[7]  Rong-Fong Fung,et al.  Exponential stabilization of an axially moving string by linear boundary feedback , 1999, Autom..

[8]  Toshihiro Kobayashi Boundary position feedback control of Kirchhoff's non‐linear strings , 2004 .

[9]  S. M. Shahruz,et al.  BOUNDARY CONTROL OF A NON-LINEAR STRING , 1996 .

[10]  Ruth F. Curtain,et al.  Absolute-stability results in infinite dimensions , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Hartmut Logemann,et al.  Time-Varying and Adaptive Integral Control of Infinite-Dimensional Regular Linear Systems with Input Nonlinearities , 2000, SIAM J. Control. Optim..

[12]  H. Logemann,et al.  The Circle Criterion and Input-to-State Stability , 2011, IEEE Control Systems.

[13]  T. Taniguchi Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchhoff type with nonlinear damping and source terms , 2010 .

[14]  Christopher D. Rahn,et al.  Adaptive vibration isolation for axially moving strings: theory and experiment , 2002, Autom..

[15]  M. Krstić,et al.  Backstepping boundary control of Burgers' equation with actuator dynamics , 2000 .

[16]  Shuzhi Sam Ge,et al.  Boundary control of a flexible marine riser with vessel dynamics , 2010, Proceedings of the 2010 American Control Conference.

[17]  A. Arosio,et al.  On the mildly degenerate Kirchhoff string , 1991 .

[18]  Ö. Morgül Control and stabilization of a flexible beam attached to a rigid body , 1990 .

[19]  Miroslav Krstic,et al.  Arbitrary Decay Rate for Euler-Bernoulli Beam by Backstepping Boundary Feedback , 2009, IEEE Transactions on Automatic Control.