Growth and generation in SL_2(Z/pZ)

We show that every subset of SL_2(Z/pZ) grows rapidly when it acts on itself by the group operation. It follows readily that, for every set of generators A of SL_2(Z/pZ), every element of SL_2(Z/pZ) can be expressed as a product of at most O((log p)^c) elements of the union of A and A^{-1}, where c and the implied constant are absolute.

[1]  Pham Do Tuan,et al.  On the estimation of Fourier coefficients. , 1969 .

[2]  Peter Sarnak,et al.  Bounds for multiplicities of automorphic representations , 1991 .

[3]  Nikolay Nikolov,et al.  Product decompositions of quasirandom groups and a Jordan type theorem , 2007, math/0703343.

[4]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[5]  S.V.Konyagin A sum-product estimate in fields of prime order , 2003, math/0304217.

[6]  Oren Dinai Poly-log diameter bounds for some families of finite groups , 2006 .

[7]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[8]  Jean Bourgain,et al.  Estimates for the Number of Sums and Products and for Exponential Sums in Fields of Prime Order , 2006 .

[9]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[10]  D. H. Brown,et al.  New bounds for Gauss sums derived from kth powers , 2000 .

[11]  M. Murty Ramanujan Graphs , 1965 .

[12]  Y. Cho,et al.  Discrete Groups , 1994 .

[13]  M THEORE,et al.  Moderate Growth and Random Walk on Finite Groups , 1994 .

[14]  Imre Z. Ruzsa,et al.  An analog of Freiman's theorem in groups , 1993 .

[15]  L. Dickson Linear Groups, with an Exposition of the Galois Field Theory , 1958 .

[16]  Geoffrey R. Robinson,et al.  Linear Groups , 2022 .

[17]  On uniform exponential growth for linear groups , 2001, math/0108157.

[18]  Alex Gamburd,et al.  On the spectral gap for infinite index “congruence” subgroups of SL2(Z) , 2002 .

[19]  P. Diaconis,et al.  Comparison Techniques for Random Walk on Finite Groups , 1993 .

[20]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[21]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[22]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.