SUPPORTING CLINICAL PROCESSES AND DECISIONS BY HIERARCHICAL PLANNING AND SCHEDULING

This article is focused on how a general‐purpose hierarchical planning representation, based on the hierarchical task networks (HTN) paradigm, can be used to support the representation of oncology treatment protocols. The planning algorithm used is a temporally extended HTN planning process capable of interpreting such representation and generating oncology treatment plans that have been proven to support clinical decisions in the area of pediatrics oncology.

[1]  Antonio González Muñoz,et al.  Handling fuzzy temporal constraints in a planning environment , 2007, Ann. Oper. Res..

[2]  Wil M. P. van der Aalst,et al.  Research Paper: A Pattern-based Analysis of Clinical Computer-interpretable Guideline Modeling Languages , 2007, J. Am. Medical Informatics Assoc..

[3]  David E. Wilkins,et al.  A Common Knowledge Representation for Plan Generation and Reactive Execution , 1995, J. Log. Comput..

[4]  Ari K. Jónsson,et al.  Activity Planning for the Mars Exploration Rovers , 2005, ICAPS.

[5]  Austin Tate,et al.  O Plan an Open Architecture for Command Planning and Control , 2006 .

[6]  Tomás Garzón,et al.  Reducing the impact of AI Planning on end users ∗ , 2007 .

[7]  Austin Tate,et al.  O-Plan2: an Open Architecture for Command, Planning and Control , 2006 .

[8]  D. McDermott,et al.  The Formal Semantics of Processes in PDDL , 2003 .

[9]  Constantine D. Spyropoulos,et al.  AI planning and scheduling in the medical hospital environment , 2000, Artif. Intell. Medicine.

[10]  Amy L. Lansky,et al.  Reactive Reasoning and Planning , 1987, AAAI.

[11]  David E. Wilkins,et al.  A Call for Knowledge-Based Planning , 2001, AI Mag..

[12]  R Haux,et al.  On Educating about Medical Data Management , 2007, Methods of Information in Medicine.

[13]  Stefan Edelkamp,et al.  Automated Planning: Theory and Practice , 2007, Künstliche Intell..

[14]  Thomas Dean,et al.  Automated planning , 1996, CSUR.

[15]  Mor Peleg,et al.  A pattern-based analysis of clinical computer-interpretable guideline modelling languages , 2006 .

[16]  Juan Fernández-Olivares,et al.  Bringing Users and Planning Technology Together. Experiences in SIADEX , 2006, ICAPS.

[17]  John Fox,et al.  AI Planning Technology as a Component of Computerised Clinical Practice Guidelines , 2005, AIME.

[18]  Juan Carlos Augusto,et al.  Temporal reasoning for decision support in medicine , 2005, Artif. Intell. Medicine.

[19]  Austin Tate,et al.  Generating Project Networks , 1977, IJCAI.

[20]  T Y Leong,et al.  Section 5: Decision Support, Knowledge Representation and Management: Free and Open Source Enabling Technologies for Patient-Centric, Guideline-Based Clinical Decision Support: A Survey , 2007, Yearbook of Medical Informatics.

[21]  Earl D. Sacerdoti,et al.  The Nonlinear Nature of Plans , 1975, IJCAI.

[22]  Alessio Bottrighi,et al.  Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines , 2006, Artif. Intell. Medicine.

[23]  Silvia Miksch,et al.  Verification of temporal scheduling constraints in clinical practice guidelines , 2002, Artif. Intell. Medicine.

[24]  Marco Pistore,et al.  Handbook of Knowledge Representation Edited Automated Planning , 2022 .

[25]  Juan Fernández-Olivares,et al.  Efficiently Handling Temporal Knowledge in an HTN Planner , 2006, ICAPS.

[26]  Silvia Miksch,et al.  Environment-Driven Skeletal Plan Execution for the Medical Domain , 2006, ECAI.