Operation regimes and electrical transport of steep slope Schottky Si-FinFETS

In the quest for energy efficient circuits, considerable focus has been given to steep slope and polarity-controllable devices, targeting low supply voltages and reduction of transistor count. The recently proposed concept of the three-independent gated Si-FinFETs with Schottky-barriers (SBs) has proven to bring both functionalities even in a single device. However, the complex combination of transport properties including Schottky emission and weak impact ionization as well as the body effect makes the design of such devices challenging. In this work, we perform a deep electrical characterization analysis to visualize and decouple the different operation regimes and electrical properties of the SB Si-FinFETs using a graphical transport map. From these, we give important guidelines for the design of future devices.

[1]  Stefan Slesazeck,et al.  Elementary Aspects for Circuit Implementation of Reconfigurable Nanowire Transistors , 2014, IEEE Electron Device Letters.

[2]  Stefan Slesazeck,et al.  Functionality-Enhanced Logic Gate Design Enabled by Symmetrical Reconfigurable Silicon Nanowire Transistors , 2015, IEEE Transactions on Nanotechnology.

[3]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[4]  October I Physical Review Letters , 2022 .

[5]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[6]  H. Riel,et al.  Toward Nanowire Electronics , 2008, IEEE Transactions on Electron Devices.

[7]  Thomas Mikolajick,et al.  Reconfigurable nanowire electronics – A review , 2014 .

[8]  Luca Gaetano Amarù,et al.  Nanowire systems: technology and design , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Stefan Slesazeck,et al.  Reconfigurable silicon nanowire transistors. , 2012, Nano letters.

[10]  Stefan Slesazeck,et al.  Material Prospects of Reconfigurable Transistor (RFETs) – From Silicon to Germanium Nanowires , 2014 .

[11]  A. G. Chynoweth,et al.  Ionization Rates for Electrons and Holes in Silicon , 1958 .

[12]  V. Ryzhii,et al.  Temperature dependence of the electron impact ionization coefficient in silicon , 1995 .

[13]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[14]  Sung-Jin Choi,et al.  Analysis of Transconductance $(g_{m})$ in Schottky-Barrier MOSFETs , 2011, IEEE Transactions on Electron Devices.

[15]  Thomas Mikolajick,et al.  Scaling and Graphical Transport-Map Analysis of Ambipolar Schottky-Barrier Thin-Film Transistors Based on a Parallel Array of Si Nanowires. , 2015, Nano letters.

[16]  Joachim Knoch,et al.  Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors , 2007 .

[17]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[18]  Ivo Bolsens,et al.  Proceedings of the conference on Design, Automation & Test in Europe , 2000 .

[19]  Thomas Ernst,et al.  Controlling the Polarity of Silicon Nanowire Transistors , 2013, Science.

[20]  G. De Micheli,et al.  On Temperature Dependency of Steep Subthreshold Slope in Dual-Independent-Gate FinFET , 2015, IEEE Journal of the Electron Devices Society.

[21]  Steven M. Nowick,et al.  ACM Journal on Emerging Technologies in Computing Systems , 2010, TODE.

[22]  W. Maes,et al.  Impact ionization in silicon: A review and update , 1990 .

[23]  Yusuf Leblebici,et al.  Configurable Logic Gates Using Polarity-Controlled Silicon Nanowire Gate-All-Around FETs , 2014, IEEE Electron Device Letters.

[24]  T. Skotnicki,et al.  On the Limitations of Silicon for I-MOS Integration , 2009, IEEE Transactions on Electron Devices.

[25]  Thomas Mikolajick,et al.  Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. , 2011, Physical review letters.

[26]  M. Amann,et al.  Semiconductor Science and Technology , 2011 .

[27]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[28]  J. Larson,et al.  Overview and status of metal S/D Schottky-barrier MOSFET technology , 2006, IEEE Transactions on Electron Devices.

[29]  gt hutilisateurs,et al.  IEEE International Electron Devices Meeting (IEDM) , 2016 .

[30]  J. Collet Solid-State Electronics , 1963, Nature.

[31]  Richard M. Swanson,et al.  Applied Physics , 1936, Nature.

[32]  Giovanni De Micheli,et al.  Emerging Technology-Based Design of Primitives for Hardware Security , 2016, JETC.

[33]  T. Mikolajick,et al.  Temperature dependent switching behaviour of nickel silicided undoped silicon nanowire devices , 2014 .