Evaluation of Using Sentinel-1 and -2 Time-Series to Identify Winter Land Use in Agricultural Landscapes

Monitoring vegetation cover during winter is a major environmental and scientific issue in agricultural areas. From an environmental viewpoint, the presence and type of vegetation cover in winter influences the transport of pollutants to water resources. From a methodological viewpoint, characterizing spatio-temporal dynamics of land cover and land use at the field scale is challenging due to the diversity of farming strategies and practices in winter. The objective of this study was to evaluate the respective advantages of Sentinel optical and SAR time-series to identify land use in winter. To this end, Sentinel-1 and -2 time-series were classified using Support Vector Machine and Random Forest algorithms in a 130 km(2) agricultural area. From the classification, the Sentinel-2 time-series identified winter land use more accurately (overall accuracy (OA) = 75%, Kappa index = 0.70) than that of Sentinel-1 (OA = 70%, Kappa = 0.66) but a combination of the Sentinel-1 and -2 time-series was the most accurate (OA = 81%, Kappa = 0.77). Our study outlines the effectiveness of Sentinel-1 and -2 for identify land use in winter, which can help to change agricultural practices.

[1]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[2]  R. Lecerf,et al.  Monitoring land use and land cover changes in oceanic and fragmented landscapes with reconstructed MODIS time series , 2005, International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005..

[3]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[4]  Elias Symeonakis,et al.  Land Use Change and Land Degradation in Southeastern Mediterranean Spain , 2007, Environmental management.

[5]  Gérard Dedieu,et al.  A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images , 2010 .

[6]  M. Weissa,et al.  Review of methods for in situ leaf area index ( LAI ) determination Part II . Estimation of LAI , errors and sampling , 2003 .

[7]  Samuel Corgne,et al.  Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring , 2014, Remote. Sens..

[8]  D. Bargiel,et al.  A new method for crop classification combining time series of radar images and crop phenology information. , 2017 .

[9]  Fabio Del Frate,et al.  Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[10]  C. Loumagne,et al.  Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields , 2008 .

[11]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[12]  Alexandre Bouvet,et al.  Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications , 2017 .

[13]  Clement Atzberger,et al.  How much does multi-temporal Sentinel-2 data improve crop type classification? , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[14]  Kurt Hornik,et al.  Misc Functions of the Department of Statistics (e1071), TU Wien , 2014 .

[15]  N. Ishitsuka,et al.  Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan , 2001 .

[16]  David Dent,et al.  The use of the Normalized Difference Vegetation Index ( NDVI ) to assess land degradation at multiple scales : a review of the current status , future trends , and practical considerations , 2014 .

[17]  L. Smith Satellite remote sensing of river inundation area, stage, and discharge: a review , 1997 .

[18]  Laurent Ferro-Famil,et al.  PolSARPro V5.0: An ESA educational toolbox used for self-education in the field of POLSAR and POL-INSAR data analysis , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Dino Ienco,et al.  Deep Recurrent Neural Networks for Winter Vegetation Quality Mapping via Multitemporal SAR Sentinel-1 , 2018, IEEE Geoscience and Remote Sensing Letters.

[20]  Seth M. Dabney,et al.  Cover crop impacts on watershed hydrology , 1998 .

[21]  Rick L. Lawrence,et al.  Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest) , 2006 .

[22]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[23]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[24]  Vincent Garcia,et al.  PEPS : Plateforme d’Exploitation des Produits Sentinel , 2018 .

[25]  Zhang Xiangmin,et al.  Comparison of pixel‐based and object‐oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China , 2006 .

[26]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[27]  K. Moffett,et al.  Remote Sens , 2015 .

[28]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[29]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[30]  Frédéric Baret,et al.  Estimating Biophysical Variables at 250 M with Reconstructed EOS/MODIS Time Series to Monitor Fragmented Landscapes , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[31]  Eric Pottier,et al.  Multitemporal classification of TerraSAR-X data for wetland vegetation mapping , 2014 .

[32]  Kristof Van Tricht,et al.  Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium , 2018, Remote. Sens..

[33]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[34]  Vincent Dubreuil,et al.  Monitoring winter vegetation cover using multitemporal modis data , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[35]  K. Shadan,et al.  Available online: , 2012 .

[36]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[37]  Limin Wang,et al.  Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[38]  Julien Radoux,et al.  Sentinel-2's Potential for Sub-Pixel Landscape Feature Detection , 2016, Remote. Sens..

[39]  Christopher Conrad,et al.  SAR and optical time series for crop classification , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[40]  C. Field,et al.  Global scale climate–crop yield relationships and the impacts of recent warming , 2007, Environmental Research Letters.

[41]  Heather McNairn,et al.  RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[42]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[43]  Jong-Sen Lee,et al.  Speckle analysis and smoothing of synthetic aperture radar images , 1981 .

[44]  Mariana Belgiu,et al.  Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis , 2018 .

[45]  Claude R. Duguay,et al.  Defining the Sensitivity of Multi-Frequency and Multi-Polarized Radar Backscatter to Post-Harvest Crop Residue , 2001 .

[46]  Gérard Dedieu,et al.  Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images , 2008 .

[47]  B. Brisco,et al.  The application of C-band polarimetric SAR for agriculture: a review , 2004 .

[48]  T. Mitchell Aide,et al.  A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America , 2010 .

[49]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Shuai Yang,et al.  Feature-Based Nonlocal Polarimetric SAR Filtering , 2017, Remote. Sens..

[51]  Samuel Corgne Hiérarchisation des facteurs structurant les dynamiques pluriannuelles des sols nus hivernaux@@@Driving factors for pluri-annual changes of winters bare soils. A hierarchization in the Yar watershed area, Brittany: Application au bassin versant du Yar (Bretagne) , 2004 .

[52]  Paul J. A. Withers,et al.  Agriculture and Eutrophication: Where Do We Go from Here? , 2014 .

[53]  Heather McNairn,et al.  Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping , 2010 .

[54]  Xulin Guo,et al.  Compare NDVI extracted from Landsat 8 imagery with that from Landsat 7 imagery , 2014 .

[55]  Claire Marais-Sicre,et al.  Monitoring Wheat and Rapeseed by Using Synchronous Optical and Radar Satellite Data—From Temporal Signatures to Crop Parameters Estimation , 2013 .

[56]  Shaun Quegan,et al.  High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval , 2003, IEEE Trans. Geosci. Remote. Sens..

[57]  P. Beck,et al.  Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI , 2006 .

[58]  Fabiana Calò,et al.  LAND COVER MAPPING USING SENTINEL-1 SAR DATA , 2016 .

[59]  Claire Marais-Sicre,et al.  Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series , 2016, Remote. Sens..

[60]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[61]  Samuel Corgne Hiérarchisation des facteurs structurant les dynamiques pluriannuelles des sols nus hivernaux. Application au bassin versant du Yar (Bretagne) , 2004 .

[62]  Heather McNairn,et al.  THE SENSITIVITY OF MULTI-FREQUENCY (X, C AND L-BAND) RADAR BACKSCATTER SIGNATURES TO BIO-PHYSICAL VARIABLES (LAI) OVER CORN AND SOYBEAN FIELDS , 2010 .

[63]  Jiyul Chang,et al.  Characterizing Water and Nitrogen Stress in Corn Using Remote Sensing , 2006 .

[64]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[65]  L. Hubert‐Moy,et al.  TerraSAR-X dual-pol time-series for mapping of wetland vegetation , 2015 .

[66]  A. Bégué,et al.  Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices — The case of sugarcane harvest on Reunion Island , 2009 .

[67]  Heather McNairn,et al.  Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data , 2006 .

[68]  Steven E. Franklin,et al.  A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery , 2012 .

[69]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[70]  Patricia Gober,et al.  Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery , 2011, Remote Sensing of Environment.

[71]  Alexandre Bouvet,et al.  Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco , 2009 .

[72]  J. Galloway,et al.  Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions , 2008, Science.

[73]  Paul D. Wagner,et al.  Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[74]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .