The hypervolume indicator for multi-objective optimisation: calculation

Multi-objective problems, requiring the optimisation of two or more conflicting criteria, abound in the real world. Multi-objective optimisers produce solution sets that represent the trade-offs between problem criteria. As a result of computational and space limitations, a multi-objective optimiser is often unable to retain all generated trade-off solutions and instead must endeavour to keep the solutions that best cover the trade-off front. Indicators which map these sets into unary values that can be easily compared are valuable and are used frequently in multi-objective performance assessment, or as a part of the selection operator of a multi-objective optimiser. One indicator which incorporates many mathematical properties favourable for use in multi-objective optimisation is the hypervolume indicator. Hypervolume is the n-dimensional space that is “contained” by a set of points. It encapsulates in a single unary value a measure of the spread of the solutions along the Pareto front, as well as the closeness of the solutions to the Pareto-optimal front. However, hypervolume has one serious drawback: calculating hypervolume exactly is NPhard and exponential in the number of objectives. This thesis describes research into improving the performance of hypervolume calculation and techniques for its use. One major contribution of this thesis is the introduction of two new calculation algorithms, IIHSO and WFG, which outperform existing hypervolume calculation algorithms on several forms of test data. The best performing of the two, WFG,

[1]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[2]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[3]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[4]  Nicola Beume,et al.  Effects of 1-Greedy -Metric-Selection on Innumerably Large Pareto Fronts , 2009, EMO.

[5]  Yaochu Jin,et al.  A Critical Survey of Performance Indices for Multi-Objective Optimisation , 2003 .

[6]  Hisao Ishibuchi,et al.  Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[7]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[8]  Lucas Bradstreet,et al.  A Fast Way of Calculating Exact Hypervolumes , 2012, IEEE Transactions on Evolutionary Computation.

[9]  Lucas Bradstreet,et al.  Use of the WFG Toolkit and PISA for Comparison of MOEAs , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[10]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[11]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[12]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[13]  Tobias Friedrich,et al.  Approximating the least hypervolume contributor: NP-hard in general, but fast in practice , 2008, Theor. Comput. Sci..

[14]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[15]  M. H. Overmars New upper bounds in Klees measure problem (extended abstract) , 1988, FOCS 1988.

[16]  Jeffery Palm A Look at the Characteristics of the HOY Algorithm and a Generic Approach to Incremental Hypervolume Calculation , 2009 .

[17]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[18]  Luigi Barone,et al.  An evolution strategy with probabilistic mutation for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[19]  Anne Auger,et al.  Articulating user preferences in many-objective problems by sampling the weighted hypervolume , 2009, GECCO.

[20]  Lucas Bradstreet,et al.  Incrementally maximising hypervolume for selection in multi-objective evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[21]  E. Zitzler,et al.  Offline and Online Objective Reduction in Evolutionary Multiobjective Optimization Based on Objective Conflicts , 2007 .

[22]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[23]  Eckart Zitzler,et al.  Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem , 2006, OR.

[24]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[25]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[26]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[27]  Anne Auger,et al.  Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences , 2009, GECCO.

[28]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[29]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[30]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[31]  Tobias Friedrich,et al.  Don't be greedy when calculating hypervolume contributions , 2009, FOGA '09.

[32]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[33]  Lucas Bradstreet,et al.  Heuristics for optimizing the calculation of hypervolume for multi-objective optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[35]  Lucas Bradstreet,et al.  A Fast Incremental Hypervolume Algorithm , 2008, IEEE Transactions on Evolutionary Computation.

[36]  Tobias Friedrich,et al.  Approximating the volume of unions and intersections of high-dimensional geometric objects , 2008, Comput. Geom..

[37]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[38]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[39]  Frank Neumann,et al.  Analyzing Hypervolume Indicator Based Algorithms , 2008, PPSN.

[40]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[41]  R. Lyndon While,et al.  Designing Crushers With A Multi-objective Evolutionary Algorithm , 2002, GECCO.

[42]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[43]  Luís Paquete,et al.  An optimal algorithm for a special case of Klee's measure problem in three dimensions , 2006 .

[44]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[45]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[46]  Eckart Zitzler,et al.  Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization , 2006, PPSN.

[47]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[48]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[49]  Lucas Bradstreet,et al.  A fast many-objective hypervolume algorithm using iterated incremental calculations , 2010, IEEE Congress on Evolutionary Computation.

[50]  Lucas Bradstreet,et al.  Maximising Hypervolume for Selection in Multi-objective Evolutionary Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[51]  Eckart Zitzler,et al.  Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods , 2007, 2007 IEEE Congress on Evolutionary Computation.

[52]  Lucas Bradstreet,et al.  Correction to "A Fast Incremental Hypervolume Algorithm" [Dec 08 714-723] , 2009, IEEE Trans. Evol. Comput..

[53]  Nicola Beume,et al.  Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces , 2005, 2005 IEEE Congress on Evolutionary Computation.

[54]  Salvatore Greco,et al.  Evolutionary Multi-Criterion Optimization , 2011, Lecture Notes in Computer Science.

[55]  P. J. Fleming,et al.  The Multi-Objective Genetic Algorithm Applied to Benchmark Problems An Analysis , 2001 .

[56]  R. Lyndon While,et al.  A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume , 2005, EMO.

[57]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[58]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[59]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[60]  Marco Laumanns,et al.  A unified model for multi-objective evolutionary algorithms with elitism , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[61]  Shapour Azarm,et al.  Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set , 2001 .

[62]  M. Farina,et al.  On the optimal solution definition for many-criteria optimization problems , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[63]  Robin Charles Purshouse,et al.  On the evolutionary optimisation of many objectives , 2003 .

[64]  Jonathan E. Fieldsend,et al.  Full Elite Sets for Multi-Objective Optimisation , 2002 .

[65]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[66]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[67]  Mark H. Overmars,et al.  New upper bounds in Klee's measure problem , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[68]  Kalyanmoy Deb,et al.  Faster Hypervolume-Based Search Using Monte Carlo Sampling , 2008, MCDM.

[69]  Frank Neumann,et al.  Do additional objectives make a problem harder? , 2007, GECCO '07.

[70]  Lucas Bradstreet,et al.  Updating exclusive hypervolume contributions cheaply , 2009, 2009 IEEE Congress on Evolutionary Computation.

[71]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[72]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[73]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[74]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.