A neural network model for the prediction of membrane‐spanning amino acid sequences

The architecture and weights of an artificial neural network model that predicts putative transmembrane sequences have been developed and optimized by the algorithm of structure evolution. The resulting filter is able to classify membrane/nonmembrane transition regions in sequences of integral human membrane proteins with high accuracy. Similar results have been obtained for both training and test set data, indicating that the network has focused on general features of transmembrane sequences rather than specializing on the training data. Seven physicochemical amino acid properties have been used for sequence encoding. The predictions are compared to hydrophobicity plots.

[1]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[2]  A. Zamyatnin,et al.  Protein volume in solution. , 1972, Progress in biophysics and molecular biology.

[3]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[4]  D. D. Jones,et al.  Amino acid properties and side-chain orientation in proteins: a cross correlation appraoch. , 1975, Journal of theoretical biology.

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  C. Chothia The nature of the accessible and buried surfaces in proteins. , 1976, Journal of molecular biology.

[8]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[9]  H. G. Khorana Anderegg, R. J.,Nihei, K.,and Biemann Amino acid sequence of bacteriorhodopsin , 1979 .

[10]  H. G. Khorana,et al.  Amino acid sequence of bacteriorhodopsin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. R. Woods,et al.  Prediction of protein antigenic determinants from amino acid sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[13]  J. Nathans,et al.  Isolation and nucleotide sequence of the gene encoding human rhodopsin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R M Stroud,et al.  Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Eisenberg,et al.  The hydrophobic moment detects periodicity in protein hydrophobicity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Rose,et al.  Hydrophobicity of amino acid residues in globular proteins. , 1985, Science.

[17]  F. Jähnig,et al.  The structure of the lactose permease derived from Raman spectroscopy and prediction methods. , 1985, The EMBO journal.

[18]  C DeLisi,et al.  The detection and classification of membrane-spanning proteins. , 1985, Biochimica et biophysica acta.

[19]  G von Heijne,et al.  Signal sequences. The limits of variation. , 1985, Journal of molecular biology.

[20]  J. Rosenbusch,et al.  Folding patterns of porin and bacteriorhodopsin. , 1985, The EMBO journal.

[21]  T. Steitz,et al.  Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[22]  S Brunak,et al.  Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin. , 1988, FEBS letters.

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  J A Bangham,et al.  Data-sieving hydrophobicity plots. , 1988, Analytical biochemistry.

[25]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[26]  Reinhard Lohmann,et al.  Selforganization by Evolutionary Strategies in Visual Systems , 1989, Parallelism, Learning, Evolution.

[27]  W A Gilbert,et al.  The prediction of transmembrane protein sequences and their conformation: an evaluation. , 1990, Trends in biochemical sciences.

[28]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[29]  F. Jähnig,et al.  Structure predictions of membrane proteins are not that bad. , 1990, Trends in biochemical sciences.

[30]  M. Degli Esposti,et al.  A critical evaluation of the hydropathy profile of membrane proteins. , 1990, European journal of biochemistry.

[31]  Y. Matsuo,et al.  Three novel molecular forms of biliary glycoprotein deduced from cDNA clones from a human leukocyte library. , 1991, Biochemical and biophysical research communications.

[32]  M Karplus,et al.  Neural networks for protein structure prediction. , 1991, Methods in enzymology.

[33]  M J Sternberg,et al.  Prediction of structural and functional features of protein and nucleic acid sequences by artificial neural networks. , 1992, Biochemistry.

[34]  William T. Katz,et al.  Artificial Neural Networks , 2018, Encyclopedia of Image Processing.

[35]  G Vriend,et al.  Modeling of transmembrane seven helix bundles. , 1993, Protein engineering.

[36]  B. Rost,et al.  Improved prediction of protein secondary structure by use of sequence profiles and neural networks. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[37]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[38]  Gisbert Schneider,et al.  Prediction of the Secondary Structure of Proteins from the Amino Acid Sequence with Artificial Neural Networks , 1993 .

[39]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[40]  G Schneider,et al.  The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. , 1994, Biophysical journal.

[41]  D. T. Jones,et al.  A method for alpha-helical integral membrane protein fold prediction. , 1994, Proteins.

[42]  David T. Jones,et al.  A method for α‐helical integral membrane protein fold prediction , 1994 .

[43]  G. Vonheijne MEMBRANE PROTEINS : FROM SEQUENCE TO STRUCTURE , 1994 .