Selenacalix[3]triazines: Anion Versus Proton Association

Selenacalix[3]triazines, cyclotrimeric metacyclophanes with direct Se linkages between the heteroaryl constituents, were shown to associate with various guest species. The preorganization of three electron deficient triazine rings allows for anions to bind through anion-π interactions, and alignment of the central nitrogen lone pairs and the well-defined size of the macroring enable association with a single proton. Extended UV/Vis titration studies indicated a clear difference in complexation behavior depending on the outer-rim substitution pattern. The host–guest properties of analogous selena- and thiacalix[3]triazines were found to be notably different.

[1]  W. Dehaen,et al.  Synthetic Protocols towards Selenacalix[3]triazines , 2013 .

[2]  De‐Xian Wang,et al.  Rational design of a functionalized oxacalix[2]arene[2]triazine host for selective recognition of H2PO4− by cooperative anion–π and hydrogen bond interactions , 2012 .

[3]  W. Dehaen,et al.  Synthetic and structural exploration of [2(4)]tetrathiacalix[2]arene[2]pyrimidines. , 2012, The Journal of organic chemistry.

[4]  N. Iki,et al.  Kinetically Stable LnIII Complexes Comprising a Trinuclear Core Sandwiched between Two Thiacalix[4]arene Ligands Self‐Assembled in Water (LnIII = NdIII, YbIII) , 2012 .

[5]  R. Schwab,et al.  Ephedrine-based diselenide: a promiscuous catalyst suitable to mimic the enzyme glutathione peroxidase (GPx) and to promote enantioselective C-C coupling reactions. , 2012, Organic & biomolecular chemistry.

[6]  W. Dehaen,et al.  Homoselenacalix[4]arenes: synthetic exploration and metallosupramolecular chemistry. , 2012, Organic & biomolecular chemistry.

[7]  Wei Cao,et al.  Fabrication of well-defined crystalline azacalixarene nanosheets assisted by Se···N non-covalent interactions. , 2012, Chemical communications.

[8]  N. P. Bizier,et al.  Single‐Step, Regioselective Synthesis of Diazadioxacalix[4]arenes and Diazadioxa[14]cyclophanes Bearing an Alternating N/O‐Bridge Pattern , 2012 .

[9]  Liang Zhao,et al.  Cu(ClO(4))(2)-mediated arene C-H bond halogenations of azacalixaromatics using alkali metal halides as halogen sources. , 2012, The Journal of organic chemistry.

[10]  W. Dehaen,et al.  (Thio)ureido anion receptors based on a 1,3-alternate oxacalix[2]arene[2]pyrimidine scaffold. , 2012, The Journal of organic chemistry.

[11]  V. Félix,et al.  Evaluation of the binding ability of tetraaza[2]arene[2]triazine receptors anchoring l-alanine units for aromatic carboxylate anions , 2012 .

[12]  W. Dehaen,et al.  Selenacalix[3]triazines: synthesis and host-guest chemistry. , 2012, Chemical communications.

[13]  A. Bianchi,et al.  Anion Coordination Chemistry: BOWMAN-JAMES:ANION COORD. O-BK , 2011 .

[14]  J. Reedijk,et al.  Anion‐π‐Wechselwirkungen ins rechte Licht gerückt , 2011 .

[15]  W. Dehaen,et al.  Homothiacalix[4]arenes: synthetic exploration and solid-state structures. , 2011, Chemistry.

[16]  J. Rullkötter,et al.  Androstanes with Modified Carbon Skeletons (Eur. J. Org. Chem. 24/2011) , 2011 .

[17]  V. Eigner,et al.  S-alkylation of thiacalixarenes: a long-neglected possibility in the calixarene family. , 2011, Organic letters.

[18]  De‐Xian Wang,et al.  Ion pair receptors based on anion-π interaction. , 2011, Chemical communications.

[19]  C. Rao,et al.  Ion and molecular recognition by lower rim 1,3-di-conjugates of calix[4]arene as receptors. , 2011, Chemical reviews.

[20]  Chuan-feng Chen,et al.  Aromatic single-walled organic nanotubes self-assembled from NH-bridged azacalix[2]triptycene[2]pyridine. , 2011, Chemical communications.

[21]  R. Tamura,et al.  Spontaneous and selective CO2 sorption under ambient conditions in seemingly nonporous molecular crystal of azacalix[5]arene pentamethyl ether. , 2011, Organic letters.

[22]  W. Dehaen,et al.  Odd-numbered oxacalix[n]arenes (n = 5, 7): synthesis and solid-state structures. , 2011, Organic letters.

[23]  R. Franke,et al.  Innentitelbild: A General and Efficient Iridium‐Catalyzed Hydroformylation of Olefins (Angew. Chem. 1/2011) , 2011 .

[24]  De‐Xian Wang,et al.  Anion recognition by charge neutral electron-deficient arene receptors. , 2011, Chimia.

[25]  De‐Xian Wang,et al.  Versatile anion-π interactions between halides and a conformationally rigid bis(tetraoxacalix[2]arene[2]triazine) cage and their directing effect on molecular assembly. , 2010, Chemistry.

[26]  T. Kanbara,et al.  Synthesis, characterization, and catalytic reactivity of a highly basic macrotricyclic aminopyridine. , 2010, Organic letters.

[27]  N. Russo,et al.  The mutual influence of non-covalent interactions in pi-electron deficient cavities: the case of anion recognition by tetraoxacalix[2]arene[2]triazine. , 2010, Chemical communications.

[28]  W. Dehaen,et al.  Synthetic Exploration of Oxacalix[2]arene[2]quinazolines , 2010 .

[29]  De‐Xian Wang,et al.  Synthesis, structure and molecular recognition of functionalised tetraoxacalix[2]arene[2]triazines. , 2010, Chemistry.

[30]  Philip A. Gale,et al.  Anion Recognition in Supramolecular Chemistry , 2010 .

[31]  Chuan-feng Chen,et al.  Triptycene-derived oxacalixarene with expanded cavity: synthesis, structure and its complexation with fullerenes C60 and C70. , 2010, Chemical communications.

[32]  W. Dehaen,et al.  An oxacalix[2]arene[2]pyrimidine-bis(Zn-porphyrin) tweezer as a selective receptor towards fullerene C70 , 2010 .

[33]  R. B. Sunoj,et al.  Organoselenium chemistry: role of intramolecular interactions. , 2010, Chemical reviews.

[34]  Y. Kondo,et al.  Thiacalix[4]arene–rubidiumassembly: supramolecular architecture based on alkali metal coordination and cation–π interactions , 2010 .

[35]  Peter Strohriegl,et al.  Donor-substituted 1,3,5-triazines as host materials for blue phosphorescent organic light-emitting diodes , 2010 .

[36]  V. Kovalev,et al.  Calixarene-based anionic receptors , 2009 .

[37]  W. Dehaen,et al.  Homoselenacalix[n]arenes. , 2009, Organic letters.

[38]  S. Böhm,et al.  Uncommon regioselectivity in thiacalix[4]arene formylation. , 2009, The Journal of organic chemistry.

[39]  K. Wen,et al.  Coordination-driven self-assembly of a discrete molecular cage and an infinite chain of coordination cages based on ortho-linked oxacalix[2]benzene[2]pyrazine and oxacalix[2]arene[2]pyrazine. , 2009, Journal of the American Chemical Society.

[40]  S. Solovieva,et al.  Molecular tectonics: 3-D organisation of decanuclear silver nanoclusters. , 2009, Chemical communications.

[41]  A. Messina,et al.  Chemically modified tetranitro-oxacalix[4]arenes: Synthesis and conformational preferences of tetra-N-(1-octyl)ureido-oxacalix[4]arenes , 2009 .

[42]  W. Dehaen,et al.  Efficient fragment coupling approaches toward large oxacalix[n]arenes (n = 6, 8). , 2009, Organic letters.

[43]  J. Reedijk,et al.  Concurrent anion...pi interactions between a perchlorate ion and two pi-acidic aromatic rings, namely pentafluorophenol and 1,3,5-triazine. , 2008, Chemical communications.

[44]  G. Parkin,et al.  Mononuclear and dinuclear molybdenum and tungsten complexes of p-tert-butyltetrathiacalix[4]arene and p-tert-butyltetrasulfonylcalix[4]arene: facile cleavage of the calixarene ligand framework by nickel. , 2008, Journal of the American Chemical Society.

[45]  B. Hay,et al.  Anion-arene adducts: C-H hydrogen bonding, anion-pi interaction, and carbon bonding motifs. , 2008, Chemical communications.

[46]  I. Kinoshita,et al.  A Thiacalix[3]pyridine Copper(I) Complex as a Highly Active Catalyst for the Olefin Aziridination Reaction , 2008 .

[47]  W. Dehaen,et al.  Efficient post-macrocyclization functionalizations of oxacalix[2]arene[2]pyrimidines. , 2008, Organic letters.

[48]  K. Dunbar,et al.  Anion-pi interactions. , 2008, Chemical Society reviews.

[49]  Z. Maksić,et al.  Hyperstrong neutral organic bases: phosphazeno azacalix[3](2,6)pyridines. , 2007, Organic letters.

[50]  S. Teat,et al.  Anion binding involving pi-acidic heteroaromatic rings. , 2007, Accounts of chemical research.

[51]  Z. Maksić,et al.  Pyridine and s-triazine as building blocks of nonionic organic superbases—a density functional theory B3LYP study , 2007 .

[52]  Z. Maksić,et al.  Derivatives of azacalix[3](2,6)pyridine are strong neutral organic superbases: a DFT study. , 2007, Organic letters.

[53]  G. Błotny Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis , 2006 .

[54]  De‐Xian Wang,et al.  Methylazacalix[4]pyridine: en route to Zn2+-specific fluoresence sensors. , 2006, Organic letters.

[55]  W. Dehaen,et al.  Selective synthesis of functionalized thia- and oxacalix[2]arene[2]pyrimidines. , 2006, Organic letters.

[56]  Takakazu Yamamoto,et al.  New Proton‐Sponge‐Like Macrocyclic Compound: Synergistic Hydrogen Bonds of Aminopyridine , 2006 .

[57]  Kazuhiro Kobayashi,et al.  Kinetically and thermodynamically controlled synthesis of tetraoxa[14]metacyclophanes and hexaoxa[16]metacyclophanes , 2006 .

[58]  T. Takui,et al.  Thiacalix[3]pyridine produces a stable mononuclear rhodium(II) complex with mutual Jahn-Teller effect. , 2006, Dalton transactions.

[59]  Erhong Hao,et al.  Synthesis of oxacalixarene-locked bisporphyrins and higher oligomers. , 2006, The Journal of organic chemistry.

[60]  G. Mugesh,et al.  Anti-thyroid drugs and thyroid hormone synthesis: effect of methimazole derivatives on peroxidase-catalyzed reactions. , 2005, Journal of the American Chemical Society.

[61]  P. Beer,et al.  Calixarene-based Anion Receptors , 2005 .

[62]  R. Tanaka,et al.  Selective oxygenation of amphiphilic thiacalix[3]pyridine Rh(I) diene complexes in both water and organic solvents. , 2005, Dalton transactions.

[63]  Michael B. Feldman,et al.  Synthesis of functionalized oxacalix[4]arenes. , 2005, Organic letters.

[64]  E. Larsen,et al.  Selenium prevents tumor development in a rat model for chemical carcinogenesis. , 2004, Carcinogenesis.

[65]  J. Rocha,et al.  Organoselenium and organotellurium compounds: toxicology and pharmacology. , 2004, Chemical reviews.

[66]  N. Schlörer NMR – From Spectra to Structures. An Experimental Approach. Von Terence N. Mitchell und Burkhard Costisella. , 2004 .

[67]  Takakazu Yamamoto,et al.  Preparation of new type of azacalixarene, azacalix[n](2,6)pyridine , 2002 .

[68]  T. Yano,et al.  Thia-calix[n]pyridines, synthesis and coordination to Cu(I,II) ions with both N and S donor atoms. , 2002, Chemical communications.

[69]  W. Dehaen,et al.  The use of 1,3,5-triazines in dendrimer synthesis , 2001 .

[70]  H. Sies,et al.  Chemistry of biologically important synthetic organoselenium compounds. , 2001, Chemical reviews.

[71]  B. König,et al.  Heteroatom‐Bridged Calixarenes , 2000 .

[72]  A. Blake,et al.  Synthesis and Structural Characterization of an S-linked Calix[3]azine , 1997 .

[73]  P. Gans,et al.  Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. , 1996, Talanta.

[74]  R. Castle Topics in heterocyclic chemistry , 1969 .