Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties

Cellulose nanocrystals (CNCs) are entering the marketplace as new high-strength nanoadditives from renewable resources. These high aspect ratio particles have potential applications as rheological modifiers, reinforcing agents in composites, coatings, and porous materials. In this work, chemically cross-linked CNC aerogels were prepared based on hydrazone cross-linking of hydrazide and aldehyde-functionalized CNCs. The resulting aerogels were ultralightweight (5.6 mg/cm3) and highly porous (99.6%) with a bimodal pore distribution (mesopores 1 μm). Chemically cross-linked CNC aerogels showed enhanced mechanical properties and shape recovery ability, particularly in water, compared to previous reports of physically cross-linked CNC aerogels. Specifically, the aerogel shape recovered more than 85% after 80% compression, even after 20 compress and release cycles. These CNC aerogels can absorb significant amounts of both water (160 ± 10 g/g of aerogel) and dodecane (72 ± 5 g/g of aerogel...

[1]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[2]  L. Heath,et al.  Cellulose nanowhisker aerogels , 2010 .

[3]  Robin H. A. Ras,et al.  Photoswitchable Superabsorbency Based on Nanocellulose Aerogels , 2011 .

[4]  John H T Luong,et al.  Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. , 2011, Small.

[5]  D. Rentsch,et al.  Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water , 2014 .

[6]  Todd Hoare,et al.  Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. , 2011, Biomacromolecules.

[7]  Robin H. A. Ras,et al.  Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[8]  S. Eichhorn Cellulose nanowhiskers: promising materials for advanced applications , 2011 .

[9]  T. Lindström,et al.  Aerogels from nanofibrillated cellulose with tunable oleophobicity , 2010 .

[10]  L. Heux,et al.  Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents , 2013 .

[11]  Antje Potthast,et al.  Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. , 2010, Macromolecular bioscience.

[12]  J. Fricke,et al.  Silica aerogel granulate material for thermal insulation and daylighting , 2005 .

[13]  Hans Arwin,et al.  Determination of Young's modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. , 2011, Biomacromolecules.

[14]  Yulin Deng,et al.  The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods , 2011 .

[15]  C. Li,et al.  Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. , 2013, Angewandte Chemie.

[16]  T. Quinn,et al.  Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing , 2011 .

[17]  B. Rånby,et al.  Aqueous Colloidal Solutions of Cellulose Micelles. , 1949 .

[18]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[19]  Y. Hsieh,et al.  Amphiphilic superabsorbent cellulose nanofibril aerogels , 2014 .

[20]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[21]  H. Imai,et al.  Application of alumina aerogels as catalysts , 1997 .

[22]  T. Hoare,et al.  Injectable, Degradable Thermoresponsive Poly(N-isopropylacrylamide) Hydrogels. , 2012, ACS macro letters.

[23]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[24]  Kevin E. Shopsowitz,et al.  The development of chiral nematic mesoporous materials. , 2014, Accounts of chemical research.

[25]  Todd Hoare,et al.  Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. , 2013, Biomacromolecules.

[26]  T. Hoare,et al.  Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate). , 2014, Chemical communications.

[27]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[28]  A. Ragauskas,et al.  Cellulose nanowhisker foams by freeze casting , 2012 .

[29]  Robin H. A. Ras,et al.  Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. , 2011, ACS applied materials & interfaces.

[30]  J. Yi,et al.  Activated carbon aerogel containing graphene as electrode material for supercapacitor , 2014 .

[31]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[32]  Kyung Wha Oh,et al.  Ultra-porous flexible PET/Aerogel blanket for sound absorption and thermal insulation , 2009 .

[33]  Kevin E. Shopsowitz,et al.  Responsive photonic hydrogels based on nanocrystalline cellulose. , 2013, Angewandte Chemie.

[34]  W. Lyons Crystal Density of Native Cellulose , 1941 .

[35]  H. Sehaqui,et al.  Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions , 2010 .

[36]  Jian Li,et al.  Ultralight and highly flexible aerogels with long cellulose I nanofibers , 2011 .

[37]  Canhui Lu,et al.  Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water , 2012 .

[38]  Hao Jin,et al.  Nanofibrillar cellulose aerogels , 2004 .

[39]  Sandra C. Thomason,et al.  Acids as derivatives of aldehydes prepared with silver oxides , 1968 .

[40]  K. Shanmuganathan,et al.  pH-Responsive Cellulose Nanocrystal Gels and Nanocomposites. , 2012, ACS macro letters.

[41]  E. J. Foster,et al.  Reinforcement of Optically Healable Supramolecular Polymers with Cellulose Nanocrystals , 2014 .

[42]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[43]  Robin H. A. Ras,et al.  Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. , 2011, Macromolecular bioscience.

[44]  Zhu Zhu,et al.  Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. , 2012, Angewandte Chemie.

[45]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[46]  L. Wågberg,et al.  Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids , 2012, Cellulose.

[47]  E. Cranston,et al.  Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. , 2013, Biomacromolecules.

[48]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[49]  Xuezhu Xu,et al.  Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. , 2013, ACS applied materials & interfaces.

[50]  H. Sehaqui,et al.  High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC) , 2011 .

[51]  Katrin Frankenfeld,et al.  Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide , 2010 .