Nanofabrication for all-soft and high-density electronic devices based on liquid metal

[1]  Andrew C. Lamont,et al.  A facile multi-material direct laser writing strategy. , 2019, Lab on a chip.

[2]  O. Brand,et al.  Submicrometer-Scale All-Soft Electronics Based on Liquid Metal , 2019, 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII).

[3]  David R. Myers,et al.  The biophysics and mechanics of blood from a materials perspective , 2019, Nature Reviews Materials.

[4]  Zhenan Bao,et al.  Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow , 2019, Nature Biomedical Engineering.

[5]  Jeonghyun Kim,et al.  Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat , 2019, Science Advances.

[6]  Chwee Teck Lim,et al.  Material approaches to active tissue mechanics , 2018, Nature Reviews Materials.

[7]  Allister F. McGuire,et al.  Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording , 2018, Proceedings of the National Academy of Sciences.

[8]  Stéphanie P Lacour,et al.  A Method to Form Smooth Films of Liquid Metal Supported by Elastomeric Substrate , 2018, Advanced science.

[9]  P. Rack,et al.  3D Nanoprinting via Focused Electron Beams , 2018, Microscopy and Microanalysis.

[10]  Yuchen Chen,et al.  Discovery of a Voltage-Stimulated Heartbeat Effect in Droplets of Liquid Gallium. , 2018, Physical review letters.

[11]  O. Brand,et al.  Multiscale and Uniform Liquid Metal Thin‐Film Patterning Based on Soft Lithography for 3D Heterogeneous Integrated Soft Microsystems: Additive Stamping and Subtractive Reverse Stamping , 2018 .

[12]  Doyoon Kim,et al.  Towards sub-microscale liquid metal patterns: Cascade phase change mediated pick-n-place transfer of liquid metals printed and stretched over a flexible substrate , 2018, 2018 IEEE Micro Electro Mechanical Systems (MEMS).

[13]  Carmel Majidi,et al.  EGaIn–Metal Interfacing for Liquid Metal Circuitry and Microelectronics Integration , 2018 .

[14]  C. Majidi,et al.  Visually Imperceptible Liquid‐Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing , 2018, Advanced materials.

[15]  Boris Murmann,et al.  Skin electronics from scalable fabrication of an intrinsically stretchable transistor array , 2018, Nature.

[16]  Oliver Brand,et al.  3D‐Integrated and Multifunctional All‐Soft Physical Microsystems Based on Liquid Metal for Electronic Skin Applications , 2018 .

[17]  Xiaolin Wang,et al.  A novel liquid metal patterning technique: voltage induced non-contact electrochemical lithography at room temperature , 2018 .

[18]  Tal Dvir,et al.  Tissue–electronics interfaces: from implantable devices to engineered tissues , 2018 .

[19]  B. Ladoux,et al.  Mechanobiology of collective cell behaviours , 2017, Nature Reviews Molecular Cell Biology.

[20]  Dong-weon Lee,et al.  An advanced selective liquid-metal plating technique for stretchable biosensor applications. , 2017, Lab on a chip.

[21]  Wei Gao,et al.  Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring , 2017, Advanced materials.

[22]  Jan Genzer,et al.  Vacuum filling of complex microchannels with liquid metal. , 2017, Lab on a chip.

[23]  M. Dickey Stretchable and Soft Electronics using Liquid Metals , 2017, Advanced materials.

[24]  C. Majidi,et al.  Soft-Matter Printed Circuit Board with UV Laser Micropatterning. , 2017, ACS applied materials & interfaces.

[25]  Jung Woo Lee,et al.  Self-assembled three dimensional network designs for soft electronics , 2017, Nature Communications.

[26]  Franklin Bien,et al.  Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics , 2017, Nature Communications.

[27]  Arnan Mitchell,et al.  Liquid metal enabled microfluidics. , 2017, Lab on a chip.

[28]  S. Bedair,et al.  Ultrafine Pitch Stencil Printing of Liquid Metal Alloys. , 2017, ACS applied materials & interfaces.

[29]  Oliver Brand,et al.  Size‐Scalable and High‐Density Liquid‐Metal‐Based Soft Electronic Passive Components and Circuits Using Soft Lithography , 2017 .

[30]  Jeonghyun Kim,et al.  A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities , 2017 .

[31]  J. Lewis,et al.  Printing soft matter in three dimensions , 2016, Nature.

[32]  J. Bell,et al.  Localized Instabilities of Liquid Metal Films via In‐Plane Recapillarity , 2016 .

[33]  D. Sameoto,et al.  Fabrication methods and applications of microstructured gallium based liquid metal alloys , 2016 .

[34]  Chan Woo Park,et al.  Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits. , 2016, ACS applied materials & interfaces.

[35]  Aaron P. Gerratt,et al.  Intrinsically Stretchable Biphasic (Solid–Liquid) Thin Metal Films , 2016, Advanced materials.

[36]  Huanyu Cheng,et al.  Bioresorbable silicon electronic sensors for the brain , 2016, Nature.

[37]  Ishan D. Joshipura,et al.  Methods to pattern liquid metals , 2015 .

[38]  Michael D. Dickey,et al.  Emerging Applications of Liquid Metals Featuring Surface Oxides , 2014, ACS applied materials & interfaces.

[39]  Michael D. Dickey,et al.  Giant and switchable surface activity of liquid metal via surface oxidation , 2014, Proceedings of the National Academy of Sciences.

[40]  Zhenan Bao,et al.  Skin-inspired electronic devices , 2014 .

[41]  Boon Chuan Low,et al.  YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth , 2014, FEBS letters.

[42]  Carmel Majidi,et al.  High‐Density Soft‐Matter Electronics with Micron‐Scale Line Width , 2014, Advanced materials.

[43]  Alexander Alexeev,et al.  Ultrasoft microgels displaying emergent, platelet-like, behaviors , 2014, Nature materials.

[44]  Rebecca K. Kramer,et al.  Direct Writing of Gallium‐Indium Alloy for Stretchable Electronics , 2014 .

[45]  Jochen Guck,et al.  Mechanics Meets Medicine , 2013, Science Translational Medicine.

[46]  J. Muth,et al.  3D Printing of Free Standing Liquid Metal Microstructures , 2013, Advanced materials.

[47]  Yonggang Huang,et al.  Multifunctional Epidermal Electronics Printed Directly Onto the Skin , 2013, Advanced materials.

[48]  Carmel Majidi,et al.  Liquid-phase gallium-indium alloy electronics with microcontact printing. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[49]  Magnus Jobs,et al.  Liquid alloy printing of microfluidic stretchable electronics. , 2012, Lab on a chip.

[50]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[51]  Yong-Lae Park,et al.  Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors , 2012, IEEE Sensors Journal.

[52]  Jooho Moon,et al.  Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding. , 2010, Nature nanotechnology.

[53]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[54]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[55]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[56]  John A Rogers,et al.  Interfacial chemistries for nanoscale transfer printing. , 2002, Journal of the American Chemical Society.