High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics

High thermoelectric figure of merit ZT of 1.5 and a high average ZT >1.0 between 300 and 850 K can be achieved for Yb-filled CoSb3, which are superior to those of any single-element-filled skutterudite and comparable to the best in this class of materials. The long-term debate about the Yb-filling fraction limit in CoSb3 is clarified to be ~0.29, and the excess Yb mainly forms metallic YbSb2 precipitates. The transport properties of the x >0.35 samples with YbSb2 precipitates are quantitatively reproduced by the Bergman’s composite theory, providing new understanding of the role of Yb in CoSb3.

[1]  Jihui Yang,et al.  Conductivity-limiting bipolar thermal conductivity in semiconductors , 2015, Scientific Reports.

[2]  Lidong Chen,et al.  Creation of Yb2O3 Nanoprecipitates Through an Oxidation Process in Bulk Yb-Filled Skutterudites , 2013, Journal of Electronic Materials.

[3]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[4]  L. D. Chen,et al.  Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12 , 2006 .

[5]  E. Bauer,et al.  Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively , 2014 .

[6]  G. J. Snyder,et al.  Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics , 2015 .

[7]  E. J. Freeman,et al.  Intermediate valence in the filled skutterudite compound YbFe{sub 4}Sb{sub 12} , 1998 .

[8]  Karma R. Sawyer,et al.  Searching for a Better Thermal Battery , 2012, Science.

[9]  P. Kent,et al.  Anomalous lattice dynamics near the ferroelectric instability in PbTe. , 2011, Physical review letters.

[10]  Brian C. Sales,et al.  Thermoelectric properties of chemically substituted skutterudites YbyCo4SnxSb12−x , 2000 .

[11]  D. J. Bergman,et al.  Thermoelectric properties of a composite medium , 1991 .

[12]  G. Meisner,et al.  Valence of Cr in skutterudites: Electrical transport and magnetic properties of Cr-doped CoSb 3 , 2002 .

[13]  Ctirad Uher,et al.  Chapter 5 Skutterudites: Prospective novel thermoelectrics , 2001 .

[14]  Han Li,et al.  Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: rich nanostructures and high thermoelectric performance , 2013 .

[15]  Ctirad Uher,et al.  High Thermoelectric Performance of In, Yb, Ce Multiple Filled CoSb3 Based Skutterudite Compounds. , 2012 .

[16]  Xiangyang Huang,et al.  High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy , 2010 .

[17]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[18]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[19]  Qingjie Zhang,et al.  Simultaneously optimizing the independent thermoelectric properties in (Ti,Zr,Hf)(Co,Ni)Sb alloy by in situ forming InSb nanoinclusions , 2010 .

[20]  Heng Wang,et al.  Low effective mass leading to high thermoelectric performance , 2011 .

[21]  Han Li,et al.  Enhanced thermoelectric properties of Bi2(Te1−xSex)3-based compounds as n-type legs for low-temperature power generation , 2012 .

[22]  Jihui Yang,et al.  Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. , 2005, Physical review letters.

[23]  C. Uher,et al.  High thermoelectric performance of In, Yb, Ce multiple filled CoSb3 based skutterudite compounds , 2012 .

[24]  Lihua Wu,et al.  On Intensifying Carrier Impurity Scattering to Enhance Thermoelectric Performance in Cr‐Doped CeyCo4Sb12 , 2015 .

[25]  Jihui Yang,et al.  Improving thermoelectric performance of caged compounds through light-element filling , 2009 .

[26]  H. A. Lyden Temperature Dependence of the Effective Masses in PbTe , 1964 .

[27]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[28]  D. Bérardan,et al.  Chemical properties and thermopower of the new series of skutterudite Ce/sub 1-p/Yb/sub p/Fe/sub 4/Sb/sub 12/ , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[29]  Han Li,et al.  Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance , 2008 .

[30]  G. J. Snyder,et al.  Optimum Carrier Concentration in n‐Type PbTe Thermoelectrics , 2014 .

[31]  F. J. Morin,et al.  Electrical Properties of Silicon Containing Arsenic and Boron , 1954 .

[32]  Qingjie Zhang,et al.  Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25–xTex (x = 0.125–0.20) with in Situ Nanostructure , 2011 .

[33]  C. Uher,et al.  Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12 , 2001 .

[34]  Ryan Maloney,et al.  Conversion efficiency of skutterudite-based thermoelectric modules. , 2014, Physical chemistry chemical physics : PCCP.

[35]  T. Hirai,et al.  Thermoelectric Properties of Te-doped CoSb3 by spark plasma sintering , 2005 .

[36]  Kim Lefmann,et al.  Avoided crossing of rattler modes in thermoelectric materials. , 2008, Nature materials.

[37]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[38]  W. Zhang,et al.  Filling fraction limits for rare-earth atoms in CoSb3 : An ab initio approach , 2006 .

[39]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[40]  G. Joshi,et al.  Thermoelectric property enhancement in Yb-doped n-type skutterudites YbxCo4Sb12 , 2014 .

[41]  Hsin Wang,et al.  Thermoelectric Properties of P-type Skutterudites YbxFe3.5Ni0.5Sb12 (0.8 x 1) , 2012 .

[42]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[43]  V. I. Fistul Heavily Doped Semiconductors , 1995 .

[44]  C. Uher,et al.  Transport and mechanical properties of Yb-filled skutterudites , 2009 .

[45]  Moayyed A. Hussain,et al.  The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators , 1991 .

[46]  Ctirad Uher,et al.  p-Type skutterudites RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction , 2011 .

[47]  Terry M. Tritt,et al.  Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. , 2010, Nano letters.

[48]  Shanyu Wang,et al.  The realization of a high thermoelectric figure of merit in Ge-substituted β-Zn4Sb3 through band structure modification , 2012 .

[49]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[50]  T. Goto,et al.  Synthesis of YbyCo4Sb12∕Yb2O3 composites and their thermoelectric properties , 2006 .

[51]  Eric J. Bauer,et al.  Chemical properties and thermopower of the new series of skutterudite Ce1-pYbpFe4Sb12 , 2003 .

[52]  C. Uher,et al.  Influence of electron-phonon interaction on the lattice thermal conductivity of Co1-xNixSb3 , 2002 .

[53]  Lihua Wu,et al.  Anisotropic Multicenter Bonding and High Thermoelectric Performance in Electron-Poor CdSb , 2015 .

[54]  Jihui Yang,et al.  Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties , 2009 .

[55]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[56]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[57]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[58]  G. Ehlers,et al.  Einstein Modes in the Phonon Density of States of the Single-filled Skutterudite Yb0.2Co4Sb12 , 2010, 1005.3867.

[59]  Jihui Yang,et al.  Iron valence in skutterudites: Transport and magnetic properties of Co1−xFexSb3 , 2000 .

[60]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[61]  G. J. Snyder,et al.  Electron and phonon scattering in the high-temperature thermoelectric La 3 Te 4 − z M z ( M = Sb , Bi ) , 2010 .