Asymptotically safe Lorentzian gravity.

The gravitational asymptotic safety program strives for a consistent and predictive quantum theory of gravity based on a nontrivial ultraviolet fixed point of the renormalization group (RG) flow. We investigate this scenario by employing a novel functional renormalization group equation which takes the causal structure of space-time into account and connects the RG flows for Euclidean and Lorentzian signature by a Wick rotation. Within the Einstein-Hilbert approximation, the β functions of both signatures exhibit ultraviolet fixed points in agreement with asymptotic safety. Surprisingly, the two fixed points have strikingly similar characteristics, suggesting that Euclidean and Lorentzian quantum gravity belong to the same universality class at high energies.

[1]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[2]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[3]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[4]  C. Flori Approaches To Quantum Gravity , 2009, 0911.2135.

[5]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[6]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[7]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[8]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[9]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[10]  Ambjorn,et al.  Nonperturbative lorentzian path integral for gravity , 2000, Physical review letters.

[11]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[12]  D. Litim,et al.  Non-perturbative thermal flows and resummations , 2006, hep-th/0609122.

[13]  Daniele Oriti Approaches to Quantum Gravity , 2009 .

[14]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[15]  J. Pawlowski,et al.  Phase structure of two-flavor QCD at finite chemical potential. , 2011, Physical Review Letters.

[16]  R. Loll,et al.  A Proper time cure for the conformal sickness in quantum gravity , 2001, hep-th/0103186.

[17]  Raymond Gastmans,et al.  Quantum gravity near two dimensions , 1978 .

[18]  C. Teitelboim Proper-time gauge in the quantum theory of gravitation , 1983 .

[19]  J. Jurkiewicz,et al.  Deriving spacetime from first principles , 2010 .

[20]  M. Reuter,et al.  Fractal spacetime structure in asymptotically safe gravity , 2005 .

[21]  Herbert W. Hamber,et al.  Quantum gravity on the lattice , 2009, 0901.0964.

[22]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[23]  Reconstructing the universe , 2005, hep-th/0505154.

[24]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[25]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[26]  C. Wetterich,et al.  The high temperature phase transition for φ4 theories , 1993 .

[27]  M. Duff,et al.  Quantum gravity in 2 + ε dimensions , 1978 .