The Acyclicity of the Frobenius Functor for Modules of Finite Flat Dimension

[1]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[2]  E. Enochs,et al.  All Modules Have Flat Covers , 2001 .

[3]  S. Iyengar Depth for complexes, and intersection theorems , 1999 .

[4]  E. Enochs,et al.  On invariants dual to the Bass numbers , 1997 .

[5]  Jinzhong Xu Flat covers of modules , 1996 .

[6]  J. Lipman,et al.  Local homology and cohomology on schemes , 1995, alg-geom/9503025.

[7]  J. Xu The existence of flat covers over Noetherian rings of finite Krull dimension , 1995 .

[8]  E. Enochs Flat covers and flat cotorsion modules , 1984 .

[9]  H. Foxby On the $\mu^i$ in a minimal injective resolution II. , 1977 .

[10]  J. Herzog Ringe der Charakteristikp und Frobeniusfunktoren , 1974 .

[11]  Christian Peskine,et al.  Dimension projective finie et cohomologie locale , 1973 .

[12]  M. Raynaud,et al.  Critères de platitude et de projectivité , 1971 .

[13]  C. U. Jensen On the vanishing of lim←(i) , 1970 .

[14]  E. Kunz Characterizations of Regular Local Rings of Characteristic p , 1969 .

[15]  H. Bass,et al.  Grothendieck Groups and Picard Groups of Abelian Group Rings , 1967 .

[16]  H. Bass,et al.  TORSION FREE AND PROTECTIVE MODULES , 2010 .

[17]  H. Bass Injective dimension in Noetherian rings , 1962 .

[18]  D. Buchsbaum,et al.  Homological dimension in noetherian rings. II , 1958 .

[19]  D. Buchsbaum,et al.  HOMOLOGICAL DIMENSION IN NOETHERIAN RINGS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.